Тризы трудноизвлекаемые запасы. Трудноизвлекаемый запас - нефть

Геологические и извлекаемые запасы

Для начала немного терминологии. Вся нефть, которая физически присутствует в пласте-коллекторе, составляет геологические запасы. По ряду причин, о которых чуть далее мы расскажем поподробнее, из пласта может быть извлечена только часть геологических запасов. Эта часть вполне ожидаемо называетсяизвлекаемыми запасами. Отношение извлекаемых запасов к геологическим или, что то же самое, доля нефти, которая может быть из пласта извлечена, называется проектным коэффициентом извлечения нефти (КИН) или нефтеотдачей. Кроме проектного, бывает ещё и текущий КИН - это доля геологических запасов, которая на текущий момент уже добыта. Понятно, что текущий КИН всегда меньше, чем проектный. Когда говорят о просто запасах без уточнения, геологические они или извлекаемые, речь идёт, как правило, об извлекаемых запасах. Когда говорят о просто КИН, имеется в виду проектный КИН.

Величина КИН зависит от многих факторов и на разных месторождениях может быть очень разной. Средним считается КИН около 30-40%; таким образом, на среднем месторождении проектом предполагается навсегда оставить в пласте 60-70% нефти. КИН в районе 10-20% считается очень низким, хотя для так называемой нетрадиционной нефти это довольно типичные значения; то есть, здесь в пласте остаётся 80-90% нефти. КИН выше 50% - очень высокий и встречается достаточно редко.

В большой степени величина КИН зависит от методов разработки, которые применяются на конкретном месторождении. Методы разработки бывают первичные, вторичные и третичные. Под первичными методами подразумевается разработка месторождения, при которой нефть из пласта выходит под естественным давлением. Начальное пластовое давление существует почти всегда и обусловлено, в основном, тем, что залежи находятся глубоко под землёй. После вскрытия залежи скважинами, по мере снижения пластового давления, происходит простое расширение нефти, а также содержащихся вместе с ней в залежи воды и газа. Объём нефти, который не помещается в пласте-коллекторе после расширения - это и есть добытый объем. Таким путем можно добыть в среднем всего порядка 10% геологических запасов. Собственно говоря, у нетрадиционной нефти бывает такой низкий КИН именно потому, что её часто добывают только первичными методами.

Вторичными методами называют закачку в пласт воды или газа через специальные нагнетательные скважины. Этими методами решают две взаимосвязанные задачи: поддержать пластовое давление, чтобы не падали дебиты добывающих скважин; а также обеспечить вытеснение нефти из пласта к добывающим скважинам, чтобы повысить КИН. Типичная нефтеотдача, достигаемая при применении вторичных методов - те самые средние 30-40%.

Закачка воды применяется чаще, чем закачка газа, так как она, как правило, более эффективна. Можно сказать, что сегодня разработка месторождений нефти с заводнением - это стандартная технология. Она применяется повсеместно уже несколько десятилетий и отработана до мелочей. Воду в пласт закачивают обычно солёную; берут её в основном из довольно глубоких водонасыщенных пластов, откуда её добывают специальными водозаборными скважинами.

Закачка же газа с целью поддержания пластового давления очень часто имеет и ещё одну цель - утилизацию лишнего, ненужного попутного нефтяного газа, который нельзя сжигать, некому продать и некуда пристроить. Иногда бывает даже трудно сказать, какую из этих задач (вторичная нефтеотдача или утилизация) при организации закачки газа решали в первую очередь.

Заводнение

О третичных методах чуть позже, а пока посмотрим, что происходит в пласте при закачке воды, и почему при этом не вытесняется 100% геологических запасов нефти.

В пласте-коллекторе, помимо нефти, изначально содержится также и значительное количество так называемой связанной воды. Обычное соотношение этих жидкостей по объёму - 70% нефти и 30% воды. Нефть и вода в пласте не смешиваются, в каждой отдельно взятой поре между ними есть чёткая граница. При этом вода обычно как бы обволакивает зерна горной породы, а нефть находится в центральных частях пор и непосредственно с горной породой нигде не соприкасается.

В процессе добычи нефти связанная вода поначалу никуда не течёт, она неподвижна, в силу химической и физической связи с частицами горной породы. Но, поскольку в пласт закачивают воду, в порах её постепенно становится все больше, а нефти - всё меньше. Вода уже не вся удерживается горной породой и может теперь перемещаться по пласту вместе с нефтью. В результате в добывающих скважинах появляется попутная вода.

Поровое пространство очень неоднородно. Его можно представить себе как множество относительно широких пор, соединённых относительно узкими поровыми каналами. Диаметр этих поровых каналов очень мал - порядка одной сотой миллиметра, - поэтому в них очень большое значение приобретает капиллярное давление. Как мы помним, с горной породой соприкасается вода, а не нефть. Поэтому, по мере того как воды становится все больше, рано или поздно наступает момент, когда в узких поровых каналах остаётся только одна вода, а капельки нефти оказываются запертыми в широких частях пор (см. рисунок).

До заводнения.После заводнения.

Капиллярное защемление капли нефти перед поровым каналом. Чем меньше радиус кривизны поверхности раздела фаз (нефти и воды), тем выше капиллярное давление. В поровом канале радиус кривизны меньше вследствие малого диаметра самого порового канала. Разность капиллярного давления в начале и в конце капли превышает приходящийся на её длину перепад давления, создаваемый эксплуатацией пласта. В результате капиллярные силы не позволяют капле пройти через поровый канал.

Теперь, для того чтобы пройти в поровый канал, капельке нефти нужно преодолеть его капиллярное давление, которое может составлять порядка одной атмосферы. То есть, чтобы вытеснить эту капельку нефти, нужно на расстоянии в несколько сотых долей миллиметра развить именно такой перепад давления. И так на всем протяжении пласта, то есть на расстоянии в несколько миллиметров перепад должен быть уже около ста атмосфер, и так далее. При желании, в лабораторных условиях, на небольших образцах горной породы, можно создать такой перепад давления и осуществить полное, стопроцентное вытеснение. На реальном же месторождении расстояние от нагнетательной до добывающей скважины составляет обычно сотни метров; нужный в таких условиях для полного вытеснения перепад давления превышает практически возможный в тысячи раз.

Запертые в порах капельки нефти представляют собой, так называемую остаточную нефть, которую физически невозможно вытеснить из пласта методом заводнения. Доля нефти, которую заводнением вытеснить можно, называется коэффициентом вытеснения. Он меняется в широких пределах, но в среднем равен примерно 60-70%.

Справедливости ради надо отметить, что все вышеописанное верно для гидрофильных пластов, то есть таких, в которых горная порода смачивается водой. В гидрофобных же пластах все наоборот - нефть обволакивает зерна горной породы, а вода находится в центральных частях широких пор. В смысле нефтеотдачи это ничего принципиально не меняет: часть нефти все равно физически невозможно извлечь заводнением, только удерживается она на этот раз не капиллярным давлением, а химическими и физическими связями с частицами горной породы, в контакте с которыми находится.

Часть пласта, в которой вытеснение нефти водой завершено, называется «промытой». Ещё одна важная причина, по которой КИН не достигает 100%, состоит в том, что при заводнении не все части залежи промываются одинаково хорошо. Во-первых, закачиваемая вода идёт большей частью по прямой линии от нагнетательной скважины к добывающей. Чем дальше в сторону от этой линии, тем медленнее и хуже промывается пласт. Во-вторых, пласт неоднороден, он может быть разбит на проницаемые пропластки, разделённые непроницаемыми породами. При этом отдельные проницаемые пропластки часто невелики по площади, и из-за этого не все нужные скважины в него попадают. Если пропласток вскрыт нагнетательной скважиной, а добывающей - нет (или наоборот), то промываться он не будет. В-третьих, вода тяжелее нефти, и поэтому имеет склонность «сползать» в нижнюю часть пласта. Верхняя часть пласта в результате остаётся непромытой.

Доля пластового объёма, которая промывается при заводнении, называется коэффициентом охвата. Типичное его значение - около 50-60%.

Проектный коэффициент извлечения нефти при заводнении рассчитывается как произведение коэффициента вытеснения и коэффициента охвата. Взяв приведённые выше типичные значения этих коэффициентов, нетрудно посчитать типичное значение нефтеотдачи - от 30 до 42%, что совпадает с ранее упомянутым средним КИН.

Цифровая модель процесса заводнения. Красные точки - добывающие скважины, синие - нагнетательные. Красный цвет поля означает высокую нефтенасыщенность, синий - высокую водонасыщенность, жёлтый и зелёный - промежуточные значения. Пучки кривых - линии тока. Иллюстрация взята с сайта группы, занимающейся разработкой новых технологий цифрового моделирования залежей нефти и газа.

Анализ структуры остаточных извлекаемых запасов округа показывает, что дальнейшая реализация его добычного потенциала связана с вовлечением в разработку трудноизвлекаемых запасов нефти – низкопроницаемых коллекторов ачимовской толщи и тюменской свиты, отложений баженовской свиты, объектов с высоковязкой нефтью, мелких залежей, пластов с высоким газовым фактором.

В соответствии с современными представлениями трудноизвлекаемые запасы нефти содержатся в залежах или частях залежей, отличающихся сравнительно неблагоприятными для извлечения УВ геологическими условиями залегания нефти и (или) аномальными физическими её свойствами. В пластах с трудноизвлекаемыми запасами наблюдается чрезвычайно сложный механизм вытеснения нефти, связанный с одновременным влиянием множества факторов, таких, как капиллярные явления, вязкостные силы, фазовые переходы в сочетании со слоистой неоднородностью. Разработка таких объектов сказывается на технико-экономических показателях из-за необходимости применения нетрадиционных технологий, специального несерийного оборудования и пр.

В «Классификации трудноизвлекаемых запасов» (Халимов Э. М., Лисовский Н. Н., 2005 г.) все критерии отнесения запасов к трудноизвлекаемым объединены в пять групп по признакам аномальности свойств нефтей и газов (вязкость), неблагоприятности характеристик коллекторов (низкие значения коэффициентов пористости, нефтенасыщенности, проницаемости, латеральная и вертикальная неоднородность пластов), типам контактных зон (нефть-пластовая вода, нефть-газовая шапка), технологическим причинам (выработанность) и горногеологическим факторам, осложняющим (удорожающим) бурение скважин и добычу нефти.



Причины осложнения выработки запасов нефти можно разделить на две составляющие: естественные и техногенные, в соответствии с которыми при определении принадлежности залежей к группе ТрИЗ используются геологические, технологические и экономические критерии. По данным Государственного баланса запасов в достаточной степени достоверно судить о доле и характеристике ТрИЗ можно, используя только геологические критерии их определения.

В «Классификации…» достаточно формализованы признаки трудноизвлекаемости по свойствам нефтей, к которым можно отнести вязкость (>30мПа*с), битуминозность (плотность при 20оС >0.895 г/см 3) нефти, содержание в ней парафина (>6%) и серы (>3.5%). Эти параметры и их граничные значения учитывают технологию добычи, транспортировки, переработки сырья, обеспечивают его комплексное использование и содержатся в характеристиках залежей данных Госбаланса РФ. Дополнительно при отнесении залежей очень сложного геологического строения к группе ТрИЗ используется предельная величина КИН, равная по экспертной оценке 0.230.

По геологическим критериям в категорию ТрИЗ на территории ХМАО-Югры отнесены 1150 залежей, которые характеризуются аномальными физико-химическими свойствами нефти, являются подгазовыми зонами нефтегазоконденсатных залежей (нефтяные оторочки небольшой мощности) или приурочены:

К продуктивным отложениям текстурного строения типа «рябчик»;

К породам доюрского комплекса с латеральной и вертикальной неоднородностью фильтрационно-емкостных свойств резервуара, преобладающим кавернозно-порово-трещинным типом коллектора;

К макро- и микроанизотропным коллекторам отложений тюменской свиты «мозаичного» строения с высокой степенью неоднородности разреза;

К отложениям ачимовской толщи с ловушками клиноформного строения и неоднородным характером строения резервуара;

К отложениям баженовской свиты, характеризующимся сложным типом коллектора и резервуара.

Залежи нефти с аномальными физико-химическими свойствами. В эту
категорию ТрИЗ по данным Госбаланса относится 268 залежей большой группы пластов 52
месторождений ХМАО-Югры с начальными геологическими/извлекаемыми запасами
(НГЗ/НИЗ) нефти промышленных категорий АВС 1 в количестве 3178/511 млн.т и 1115/255
млн.т по категории С 2 . Накопленная добыча нефти составляет 459.2 млн.т – 47.3% от НИЗ
категорий АВС 1 . По критерию вязкости нефти из 52-х в эту категорию входят шесть
месторождений: Ван-Еганское, Восточно-Янлотское, Жумажановское, Западно-

Варьеганское, Остапенковское и Экутальское, суммарные НИЗ которых составляют 16% и 8% категорий АВС 1 и С 2 , накопленная добыча – 0.3%, степень выработанности запасов – 1.7% от НИЗ. Четыре месторождения из этих шести располагаются в западной части округа в пределах Красноленинской, Приуральской и Фроловской нефтегазоносных областей (НГО).

Залежи в отложениях пластов с «рябчиковой» текстурой сложены песчано-глинистыми породами алымской свиты, характеризующимися сильной литологической неоднородностью, тонким переслаиванием песчаных и глинистых включений различной формы и размеров. Основная отличительная особенность коллекторов «рябчиковой» текстуры состоит в том, что она представляет собой тонкое переслаивание песчано-алевролитовых и глинистых пород. В пачке «рябчика» чередование прослоев коллекторов и неколлекторов не всегда подчиняется закону параллельного напластования, а имеет более сложную мозаичную или «рябчиковую» текстуру. При оценке подсчётных параметров этих пластов по ГИС применяется модель анизотропного коллектора, поскольку она является более адекватной по сравнению с моделью порового коллектора с рассеянной глинистостью.

В эту категорию отнесено 12 залежей 9 месторождений ХМАО-Югры с начальными
геологическими/извлекаемыми запасами (НГЗ/НИЗ) нефти промышленных категорий АВС 1 в
количестве 69/15 млн.т и 107/22 млн.т по категории С 2 . Накопленная добыча нефти
составляет 1.4 млн.т – 9.5% от НИЗ категорий АВС 1 . Основная часть запасов всех категорий
(92%) сосредоточена в пластах АВ 1 1-2 трёх месторождений Большого Самотлора
(Мегионское, Нижневартовское, Северо-Покурское) и Лугового месторождения,

расположенных в пределах Вартовского нефтегазоносного района Среднеобской НГО.

Залежи в доюрском комплексе (ДЮК) приурочены к комплексу пород
дислоцированного складчатого основания (фундамента) и промежуточного комплекса
предположительно пермо-триасового возраста. Триасовые образования представлены
покровами основных эффузивов с прослоями туфов, песчаников, алевролитов и аргиллитов.
Фильтрационно-емкостные свойства пород доюрского комплекса невысокие. Эффективная
емкость коллекторов преимущественно кавернозно-поровая, преобладающий тип

коллектора – кавернозно-порово-трещинный. Несмотря на низкие фильтрационно-емкостные свойства пород по керну, при опробовании пород доюрского комплекса получены неплохие притоки нефти, обусловленные наличием трещин.

К образованиям доюрского комплекса приурочено 48 залежей 24 месторождений
ХМАО-Югры с начальными геологическими/извлекаемыми запасами (НГЗ/НИЗ) нефти
промышленных категорий АВС 1 в количестве 338/66 млн.т и 137/25 млн.т по категории С 2 .
Накопленная добыча нефти составляет 8.7 млн.т - 13.2% от НИЗ категорий АВС 1 .Основная
часть запасов всех категорий (91%) сосредоточена в отложениях триаса и коры
выветривания фундамента четырёх месторождений: Рогожниковского (с Северо-Рогожниковским), Высотного, Красноленинского и Северо-Даниловского. Территориально месторождения расположены в западной части округа в пределах Красноленинской и Приуральской НГО.

Залежи тюменской свиты приурочены к продуктивным отложениям с

неравномерным переслаиванием аргиллитов, алевролитов, песчаников и углей аален-
байос-бат-раннекелловейского возраста.. Особенностями продуктивного разреза тюменской
свиты являются сильная фациальная изменчивость отложений. По результатам керновых,
гидродинамических и индикаторных исследований установлена высокая степень послойной
и зональной фильтрационной неоднородности отложений. Зачастую по разрезу скважины
проницаемость слоев-коллекторов меняется на порядок и более, что существенно
сказывается на однородности выработки запасов. Толщина отдельных проницаемых
прослоев невелика и составляет, в основном, 0.5-2.0 м. Песчанистость разреза тюменской
свиты увеличивается вниз по разрезу, где, как правило, мощные песчаные тела
оказываются водонасыщенными. Среднее значение суммарной эффективной

нефтенасыщенной толщины залежей в скважинах изменяется в диапазоне 0.1-15 м и составляет, в среднем, около 4 м.

Запасы нефти отложений тюменской свиты имеют со стратиграфические индексы Ю 2-
9 , ЮС 2-9 , ЮК 2-9 , ЮВ 2-9 , Т 1-3 и «тюменская свита». На Государственном балансе РФ в
отложениях тюменской свиты по ТрИЗ числится 329 залежей 109 месторождений,
содержащих (НГЗ/НИЗ) 1672/350 млн.т нефти промышленных категорий АВС 1 и 3575/642
млн.т по категории С 2 . Накопленная добыча нефти составляет 39.0 млн.т - 11.2% от НИЗ
категорий АВС 1 . Наибольшая часть запасов всех категорий (60%) содержится на 11
месторождениях (Ай-Пимское, Восточно-Сургутское, Галяновское, Кечимовское,

Красноленинское, Ловинское, Рогожниковское, Родниковое, Русскинское, Средненазымское, Федоровское) с НИЗ в диапазоне 10-105 млн.т, расположенных в западной и центральной частях округа в пределах Красноленинской, Приуральской, Фроловской и Среднеобской НГО.

Залежи ачимовской толщи приурочены к отложениям нижней части осложненного подкомплекса неокома, разрез которого представляет собой неравномерное, часто линзовидное переслаивание алевролитов, песчаников и аргиллитоподобных глин. Из особенностей строения продуктивных пластов ачимовской толщи, осложняющих продуктивный резервуар, следует отметить высокую степень неоднородности как по латерали, так и по разрезу, а также преимущественно невысокие фильтрационно-емкостные свойства коллекторов - доминируют коллекторы IV-V класса по А.А. Ханину со средними значениями пористости 17% и нефтенасыщенности 51%. Среди коллекторов преобладают алевролиты, реже аркозовые песчаники средней сортировки с многочисленными включениями сидерита.

Продуктивные пласты индексируются по-разному, поэтому на Государственном балансе РФ запасы нефти ачимовских отложений учтены в объектах стратиграфических индексов: как БС 16 -БС 22 и БС 18 -БС 22 (до 1985 года), Ач, Ач 2 ...Ач 6 (после 1985-1991 г.г.). В последние годы при постановке на учёт Госбаланса подсчётным объектам ачимовской толщи присваивается двойной индекс – к примеру Ач(БС 10), в скобках указывается синхронный ачимовскому пласт покровного залегания на шельфе. На Государственном балансе РФ по ТрИЗ отложений ачимовской толщи числится 378 залежей 90 месторождений ХМАО-Югры с НГЗ/НИЗ промышленных категорий АВС 1 в количестве 568/113 млн.т и 771/147 млн.т по категории С 2 . Наибольшая часть запасов всех категорий (75%) содержится на 34 месторождениях с НИЗ 1-14 млн.т, расположенных в центральной и восточной частях округа. Накопленная добыча нефти составляет 15.8 млн.т - 14.0% от НИЗ категорий АВС 1 .

Залежи, связанные с подгазовыми зонами нефтяных оторочек небольшой мощности. На Государственном балансе РФ числится 22 нефтегазоконденсатные залежи группы пластов ПК 15-20 , АС 4-10 , БВ 6-21 по 11 месторождениям. Фильтрационно-емкостные свойства коллекторов достаточно высокие: пористость и нефтенасыщенность изменяются в широких пределах (Кп=19-34%, Кн=37-65%), преобладают коллекторы со средними значениями пористости 24% и нефтенасыщенности 51%. В 22 залежах содержатся НГЗ/НИЗ промышленных категорий АВС 1 в количестве 651/144 млн.т и 43/8 млн.т по категории С 2 . Накопленная добыча нефти составляет 122.1 млн.т - 84.9% от НИЗ категорий АВС 1 .

Залежи нефти баженовской (тутлеймской) свиты характеризуются сложным строением структуры порового пространства. Выделяется три морфологических типа коллекторов: трещинно-поровый, трещинный и трещинно-кавернозный. Пласты баженовской свиты характеризуются невысокими фильтрационно-емкостными свойствами: пористость 8-10%, трещинная ёмкость невелика и составляет 0.1-0.3%, проницаемость для коллекторов трещинного и трещинно-порового типа составляет 0.01-0.020 мкм 2 , нефтенасыщенность – около 80-90%. Продуктивность отложений слабо зависит от ёмкости порового пространства и, в большей степени, определяется фильтрационной сообщаемостью пор.

Особенности строения продуктивных отложений баженовской свиты влияют на однозначность определения стратиграфической принадлежности подсчётного объекта и на достоверность оценки запасов углеводородов. В настоящее время отсутствуют методики определения подсчётных параметров коллекторов в скважинах и площадного картирования продуктивного резервуара баженовских отложений по данным полевых и дистанционных методов исследований. При оперативных оценках запасов в последние годы параметры утверждаются условно в зависимости от результатов опробований: при получении притока нефти эффективная нефтенасыщенная толщина принимается как 1/3 от общей в высокоомной части свиты, величина открытой пористости коллекторов - равной 8% и нефтенасыщенности - 85%, площадь нефтеносности залежи ограничивается зоной дренирования скважины.

На Государственном балансе РФ запасы нефти отложений баженовской свиты учтены в пластах со следующими стратиграфическими индексами: Ю 0 , ЮК 0 , ЮК 0-1 , ЮС 0 , ЮС О К и «баженовская свита» по 93 залежам 44 месторождений, в которых содержится (НГЗ/НИЗ) 1058/269 млн.т нефти промышленных категорий АВС 1 и 834/194 млн.т по категории С 2 . Накопленная добыча нефти составляет 5.6 млн.т - 2.1% от НИЗ категорий АВС 1 . В нераспределённом фонде недр ХМАО-Югры находятся 77% НИЗ всех категорий, в том числе 83% промышленных категорий ВС 1 . Основную часть составляют уникальные по объёму запасы нефти пласта Ю 0 Салымского месторождения, однако достоверность их невысока, поскольку полный пересчёт запасов нефти этого месторождения не проходил Госэкспертизу ГКЗ с 1986 года. Доля начальных извлекаемых запасов нефти остальных месторождений, экспертиза которых осуществлялась ФГУ «ГКЗ» Роснедра в последние годы, незначительна и составляет в общем балансе не более 20% (10% промышленных категорий ВС 1). Залежи нефти в пласте Ю 0 расположены в западной и центральной частях округа в пределах Красноленинской, Фроловской и Среднеобской НГО.

Нефть является одним из основных ресурсов, необходимых человеку. Уже на протяжении многих тысячелетий человечество использует нефть в разных сферах деятельности. И, не смотря на то, что ученые неустанно работают над разработкой новых энергетических технологий, нефть все равно остается незаменимым продуктом в области энергетики, в первую очередь. Однако, запасы этого «черного золота» истощаются несказанно быстро. Практически все гигантские месторождения давно уже найдены и разработаны, таковых практически не осталось. Стоит отметить, что с начала текущего столетия еще не было найдено ни одного крупного нефтяного месторождения, как Самотлор, Аль-Гавар или Прудо-Бей. Этот факт является свидетельством того, что человечество уже израсходовала самую большую часть нефтяных залежей. В связи с этим, вопрос о добыче нефти с каждым годом становится все острее и актуальнее, особенно для Российской Федерации, которая по объему мощности своего сектора в нефтеперерабатывающей области среди всех стран в мире находится на третьем месте, пропустив вперед Китай и США.

Таким образом, российская власть прилагает максимум усилий для того, чтобы поддержать объемы нефтедобычи, тем самым сохранив влиятельность государства на мировом рынке. Согласно аналитическим прогнозам, в скором будущем лидерство в области нефтедобычи перейдет к Канаде, Бразилии и США, что является неутешительным для РФ. С 2008 года в стране наблюдается отрицательная динамика в добыче этого ресурса. По данным Министерства энергетики по состоянию на 2010 год добыча нефти в государстве составляла 10,1 млн бар., однако к 2020 году, если ничего не изменится, добыча упадет до 7,7 млн бар. Ситуацию может изменить только принятие кардинальных мер в политике нефтедобывающей и нефтеперерабатывающей отрасли. Однако, эти все статистики и показатели не являются свидетельством того, что запасы нефти и вовсе заканчиваются. Это говорит о том что теперь большую часть составляют трудноизвлекаемые запасы нефти. По подсчетам Минэнего, общее количество таких нефтяных залежей на территории России составляют прядка 5-6 миллиардов тонн, что в процентном соотношении составляет 50-60% от общего объема. Таким образом, трудноизвлекаемая нефть является хорошим решением проблемы, которая заключается в сохранении необходимых объемов добычи нефти. Таким образом, добыча трудноизвлекаемой нефти является вынужденной мерой.

Трудноизвлекаемыми запасами нефти называются нефтяные залежи, для которых характерны неблагоприятные условия для добычи данного ресурса, а также неблагоприятные физические свойства. Кроме этого, к данному типу нефтяных залежей также относятся и те, которые располагаются в шельфовой зоне, в месторождениях, находящихся в поздней стадии разработки, а также высоковязкая нефть. Хорошим примером добычи высоковязкой нефти является разработка Ямало-Немецкого месторождения, которое имеет особенности, способствующие застыванию нефти не только на морозе, но и при плюсовой температуре.

Абсолютно все залежи трудноизвлекаемой нефти подразделяются на две категории:

  1. Залежи, характеризующиеся низкой проницаемостью пластов. К таким относятся плотные песчаники, сланцы, баженовская свита;
  2. Высоковязкая и тяжелая нефть - природные битумы, нефтяные пески.

Стоит отметить, что нефть, относящаяся к первой группе по своим качественным характеристикам вполне сопоставима с той нефтью, которая добыта традиционным способом.

Учитывая трудности во время добычи такой нефти, стоит отметить, что обычные методы разработки таких месторождений будут неэффективными. В связи с этим, применяются совершенно иные технологии, требующие соответствующих затрат. На протяжении нескольких лет специалисты изучают залежи трудноизвлекаемой нефти и разрабатывают подходящие, и в то же время относительно бюджетные, способы ее добычи.

Таким образом, разработка трудноизвлекаемых запасов нефти традиционными методами приводит к тому, что изначально ресурс из скважины идет хорошо, однако он быстро заканчивается. Это связано с тем, что добыча нефти в данном случае осуществляется из маленького участка, который вплотную прилегает к перфорированному участку скважины. В связи с этим, бурение привычных вертикальных скважин не дает необходимого результата. В данном случае, следует использовать методы, позволяющие увеличить продуктивность скважины. Как правило, они направлены на увеличение площади соприкосновения с пластом, который имеет большую нефтяную насыщенность. Такой эффект можно достичь путем бурения скважин, имеющих большой горизонтальный участок, а также применения метода гидроразрыва пласта в нескольких местах одновременно. Данный способ также зачастую используется при добыче сланцевой нефти. Однако, для добычи, например, природных битумов или сверхвязкой нефти, данный способ будет неэффективным.

Выбор методов добычи подобного сырья основывается на таком параметре, как глубина залегания пород, насыщенных нефтью. Если залежи находятся на сравнительно небольшой глубине, до нескольких десятков метров, то применяется открытый способ добычи. В противном случае, если глубина залегания достаточно велика, то трудноизвлекаемую нефть сначала подогревают паром под землей, что позволяет сделать ее более жидкой и поднять на поверхность. Производство пара, который закачивается в скважину, осуществляется в специальной котельной. Стоит отметить, что трудности возникают с использованием данного метода в том случае, если глубина залегания трудноизвлекаемой нефти сильно большая. Это связано с тем, что по пути к нефти, пар теряет свою температуру, тем самым не прогревая нефть необходимым образом, из-за чего ее вязкость изменяется не так, как нужно. Поэтому, существует метод парогазового воздействия, предполагающий не подачу пара в пласт, а его получение прямо на нужной глубине. Для этого осуществляется установка парогенератора прямо в забое. В парогенератор подаются специальные реактивы, при взаимодействии которых выделяется тепло, что способствует образованию азота, углекислого газа и воды. Когда углекислый газ растворяется в нефти, то она также становится менее вязкой.

Таким образом, стоит отметить, что трудноизвлекаемая нефть является важным ресурсом, добыча которого позволит поддерживать добычу необходимых объемов нефти. Однако, для ее извлечения следует применять принципиально другие методы, существенно отличающиеся от добычи нефти из традиционных залежей. Это, в свою очередь, влечет за собой дополнительные финансовые растраты. В связи с этим, конечная стоимость добытой трудноизвлекаемой нефти составит порядка 20 долларов за 1 баррель, в то время, как стоимость 1 барреля традиционной нефти составляет 3-7 долларов. Специалист продолжают работать над новыми технологиями, которые позволят добывать трудноизвлекаемую нефть с минимальными затратами.

ВВЕДЕНИЕ............................................................................................................................................. 3

ТРУДНОИЗВЛЕКАЕМЫЕ ЗАПАСЫ И ПРИНЦИПИАЛЬНЫЕ РЕШЕНИЯ ПО

ИХ ВОВЛЕЧЕНИЮ................................................................................................................................ 4

1.1. Тенденции в недропользовании ХМАО-Югры.................................................................. 4

1.2. Понятие о трудноизвлекаемых запасах и их классификация..................................... 5

1.3. Принципиальные решения по длительно разрабатываемым месторождениям ХМАО-Югры 10

1.4. Современные технологии интенсификации добычи и повышения нефтеотдачи на месторождениях ХМАО-Югры........................................................................................................... 12

1.4.1. Основные подходы к применению гидроразрыва пласта............................................... 13

1.4.2. Бурение горизонтальных скважин..................................................................................... 15

1.4.3. Зарезка боковых стволов................................................................................................... 20

1.4.4. Основные решения по обработке призабойной зоны пласта........................................ 22

1.4.5. Нестационарное заводнение.............................................................................................. 23

1.5. Принципиальные решения по вовлечению в разработку низкопроницаемых коллекторов........................................................................................................ 25

1.6. Основные технологические решения по вовлечению в разработку мелких залежей нефти 28

1.7. Перспективные технологии вовлечения в разработку баженовско-абалакского комплекса 30

1.8. Принципиальные решения по разработке залежей высоковязкой нефти 33

2. ИННОВАЦИОННЫЕ технологии ДЛЯ вовлечения в разработку
трудноизвлекаемых запасов.......................................................................................................... 35

2.1. Общие сведения об инновационных технологиях........................................................ 35



2.2. Газовые и водогазовые методы воздействия на продуктивный пласт 38

2.3. Тепловые методы воздействия на продуктивный пласт.......................................... 41

2.4. Электромагнитное воздействие на продуктивный пласт........................................ 45

2.5. Термогазовое воздействие на продуктивный пласт.................................................. 48

2.6. Дилатансионное воздействие на продуктивный пласт............................................. 50

2.7. Комплексные физико-химические методы увеличения нефтеотдачи..................... 53

2.8. Технология резонансно-волнового воздействия.......................................................... 57

2.9. «Интеллектуальные» скважины.................................................................................... 59

Список используемой литературы.............................................................................................. 63


ВВЕДЕНИЕ

В учебном пособии к теоретическим и практическим занятиям по дисциплине «Разработка месторождений с трудноизвлекаемыми запасами» представлены актуальные вопросы, касающиеся проблем вовлечения в разработку трудноизвлекаемых запасов нефти и основных решений, направленных на преодоление факторов, затрудняющих их выработку. Представлен теоретический материал по наиболее известным инновационным технологиям разработки месторождений нефти и возможностях их применения в различных геолого-физических условиях.

При изучении дисциплины необходимы знания по следующим дисциплинам: математика, геология нефти и газа, физика нефтяного и газового пласта, подземная гидромеханика, а также основам проектирования, разработки и обустройства нефтяных месторождений.

Методические указания предназначены для студентов, обучающихся по

специальностям: 130503 – «Разработка и эксплуатации нефтяных и газовых

месторождений» и по направлению 131000 – «Нефтегазовое дело» для всех профилей, всех форм обучения.

Курс «Разработка месторождений с трудноизвлекаемыми запасами» предназначен для ознакомления магистров с современным состоянием и тенденциями в нефтедобыче, обуславливающими их причинами, а также возможностями улучшения выработки запасов посредством внедрения технологий воздействия на нефтесодержащие пласты.

ТРУДНОИЗВЛЕКАЕМЫЕ ЗАПАСЫ И ПРИНЦИПИАЛЬНЫЕ РЕШЕНИЯ ПО ИХ ВОВЛЕЧЕНИЮ

Тенденции в недропользовании ХМАО-Югры

Ханты-Мансийский автономный округ – Югра является основной базой нефтедобычи Российской Федерации. Максимальные объемы добычи нефти были достигнуты в 1985 году, когда было добыто 361 млн. т, после чего начался период неуклонного снижения. К 1996 году объемы годовой добычи упали до 165 млн. т., обводненность продукции скважин составила 84% при отборе менее 40% извлекаемых запасов. С 1998 года с учетом растущих цен на углеводородные продукты нефтяные компании стали наращивать добычу нефти. В 2007 г. был достигнут максимальный постперестроечный уровень добычи нефти для ХМАО-Югры - 278,4 млн. т. Однако с 2008 года уровни добычи снова начали снижаться. В 2013 году было добыто 255 млн. т нефти, что составило 49% российской и 7% мировой добычи.

Основным фактором снижения добычи нефти послужило ухудшение структуры запасов: в то время как разбуренные НИЗ выработаны более чем на 70%, запасы неразбуренные, содержащиеся в новых месторождениях, характеризуются менее благоприятными геолого-физическими условиями – нашедшими выражение в значительно более низких коэффициентах нефтеотдачи.

Согласно структуре запасов нефти ХМАО-Югры накопленная добыча нефти 10,2 млрд т, что составляет немногим более половины запасов. Текущие запасы промышленных категорий распределенного фонда недр составляют 8 млрд т, в составе которых 2,5 млрд т нефти в пластах с проницаемостью более 50 мД с обводненностью более 90%. Наибольшие запасы 2,6 млрд т содержат продуктивные пласты с проницаемостью от 10 до 50 мД и обводненностью 64%. Выработанность начальных извлекаемых запасов нефти этих пластов составляет 37% и делает их первоочередным объектом. В пластах с проницаемостью от 2 до 10 мД содержится 1,6 млрд т нефти с обводненностью продукции 44% и выработанностью начальных извлекаемых запасов 23%. В низкопроницаемых пластах с проницаемостью менее 2 мД содержится 1,3 млрд т нефти, что при применении современных технологий также являются объектами разработки.

На территории ХМАО-Югры в качестве традиционного применяется способ разработки, основанный на вытеснении нефти нагнетаемой в пласт водой. На длительно разрабатываемых месторождениях применение заводнения послужило причиной высокой доли воды в добываемой продукции. Тенденции к снижению добычи нефти, выбытию эксплуатационного фонда, а также текущие отборы воды, кратно превышающие текущие отборы нефти, свидетельствуют о том, что возможности заводнения по обеспечению роста нефтеотдачи на этих месторождениях в основном исчерпаны. Дальнейшая их разработка при нагнетании воды будет сопровождаться ростом доли воды в добываемой продукции и, как следствие, увеличением эксплуатационных затрат.

Для поддержания уровней добычи нефти и повышения нефтеотдачи на большинстве
нефтяных месторождениях проводятся геолого-технические мероприятия. В 2014 г. в ХМАО-Югре выполнено 26462 ГТМ, за счет которых добыто дополнительно 26 млн. т нефти (10,4 % общей добычи). По сравнению с 2013 г. число мероприятий увеличилось на 21,9 %, дополнительная добыча за счет ГТМ – на 8,6 %. Наиболее часто реализуемыми технологиями являются бурение горизонтальных скважин (ГС) и боковых стволов, различные модификации гидроразрыва пласта (ГРП), гидродинамические и физико-химические методы увеличения нефтеотдачи (МУН). Однако несмотря на рост объемов применения и дополнительной добычи нефти от ГТМ, их удельная эффективность снижается.

Перспективы нефтяной отрасли ХМАО-Югры связаны с доразработкой

месторождений, находящихся на завершающих стадиях эксплуатации, но обладающтх
значительными добычными возможностями, а также с реализацией потенциала новых
месторождений, характеризующихся более сложным строением и ухудшенными

фильтрационно-емкостными свойствами, эффективную выработку которых не обеспечивают традиционные технологические решения.

Для реализации добычного потенциала нефтяных месторождений ХМАО-Югры необходимо применение принципиально новых технологических решений, комплексное внедрение инновационных технологий повышения нефтеотдачи.

Табл.1. Модификации технологии ГРП на месторождениях Западной Сибири

Модификация технологии ГРП Краткая характеристика Назначение
Системный Обработка нагнетательной и добывающих скважин участка Поддержание потенциала пластов с низкой проницаемостью
Селективный Установка пакера между интервала перфорации Разделение разрывов продуктивных пачек
Большеобъемный Масса проппанта значительно выше средней по совокупности обработок Увеличение охвата пласта воздействием
Безпакерный Без установки пакера Щадящий ГРП при дефектах эксплуатационной колонны
Многозонный (на горизонтальной скважине) Множественный ГРП на горизонтальном участке ствола Интенсификация притока и увеличение охвата пласта воздействием
Комбинация проппанта различного фракционного состава Последовательная подача пачек проппанта, различающихся размером зерен Оптимизация упаковки трещины в сложнопостроенном разрезе
Использование проппантов с полимерным покрытием Подача на последней стадии зерен, покрытых смоло-полимерной оболочкой Снижение выноса проппанта из трещины
Принудительное закрытие трещины Отбор жидкости из трещины сразу после прекращения закачки Принудительное удаление нераспавшегося геля из трещины, фиксация более равномерной упаковки трещины
Концевое экранирование трещины (TSO) Пониженный объем подушки, увеличенный темп роста концентрации проппанта Создание широкой трещины. Ограничение длины трещины.
Создание экранируемой оторочки на кромке трещины гидроразрыва Буферная жидкость с цементным раствором Закупорка системы микротрещин на кромке магистральной трещины


Теоретически на дебиты горизонтальных скважин наряду с такими параметрами как депрессия, вскрытая нефтенасыщенная толщина, оказывает влияние длина горизонтального участка ствола. С увеличением длины горизонтального ствола до определенного предела дебит увеличивается. Однако в низкопродуктивных коллекторах проницаемостью порядка 10 мД, как показали теоретические исследования, увеличение длины горизонтального участка ствола более 200-300 м не приводит к существенному увеличению среднего дебита скважины.

Современные технологии позволяют успешно осуществлять проводку горизонтальных скважин с большим или инвертированным углом отклонения от вертикали. В случае пластов с малыми эффективными мощностями не редко применяется синусоидальная траектория проводки ствола скважины, что повышает вероятность вскрытия пропластков коллекторов. Направление горизонтального ствола уточняется после бурения пилотного ствола скважины и обработки данных, полученных в результате геофизических исследований.

Технология бурения ГС может вполне эффективно применяться в случае наличия:

Продуктивных пластов с малой эффективной нефтенасыщенной толщиной;

Низкопроницаемых и неоднородных пластов;

Залежей с обширными водонефтяными зонами;

Пластов с развитой системой вертикальных трещин.

Применение горизонтальных скважин может оказаться низкоэффективным в случае значительной расчлененности пластов либо заглинизированности пластов. Для повышения эффективности бурения ГС применяется многостадийный (многозонный) гидроразрыв пласта (МГРП). В результате МГРП не только повышается производительность скважины (как при обычном гидроразрыве), но и увеличивается область дренирования и обеспечивается гидродинамическая связь горизонтального ствола с невскрытыми пропластками. Данное обстоятельство позволяет рассматривать технологию многозонного гидроразрыва как метод увеличения нефтеотдачи - по крайней мере, на пластах с неоднородным геологическим строением. В качестве метода интенсификации многозонный гидроразрыв может применяться также на низкопроницаемых пластах.

На территории ХМАО многозонный гидроразрыв на горизонтальных скважинах применяется с 2009 года двумя крупнейшими недропользователями - ООО «ЛУКОЙЛ-Западная Сибирь» и НК «Роснефть». Опыт применения данной технологии отмечен на 15 месторождениях, включая Урьевское, Северо-Покачевское, Повховское, Ватьеганское, Тевлинско-Русскинское, Приобское и Самотлорское. Дебиты нефти по горизонтальным скважинам с многозонным гидроразрывом в 2-4 раза превышает аналогичный показатель по скважинам обычного профиля.

Кроме того, высокая расчлененность и геологическая неоднородность в отдельных случаях обуславливают необходимость специфического дизайна горизонтального бурения,

при котором горизонтальным участком вскрывается наиболее мощный из пропластков, тогда как на вышележащих пропластках профиль скважины близок к наклонно-направленному. Тем самым достигается максимизация дренируемой поверхности, за счет чего обеспечивается не только увеличение охвата по разрезу и площади, но и более высокая продуктивность.

Имеются и другие особенности бурения и размещения горизонтальных скважин для эффективной разработки неоднородных пластов. Во-первых, горизонтальные участки ориентированы в направлении застойных зон. Во-вторых, горизонтальные участки размещаются перпендикулярно фильтрационным потокам со стороны нагнетательных скважин. При этом площадная и очагово-избирательная системы превращаются в аналог рядных, где в качестве стягивающих рядов используются горизонтальные скважины. При корректно обоснованной ориентации такой системы с учетом особенностей строения пласта, напряженно-деформационного состояния существенно повышается эффективность вытеснения нефти. В-третьих, длина горизонтального участка принимается предельно возможной - т.е. сопоставимой с размерностью сетки скважин. Помимо стремления к максимальному охвату застойных зон такой подход продиктован высокой неоднородностью строения среднеюрских пластов, снижающей эффективность горизонтального бурения. Увеличение длины участка в таких условиях служит основным способом повышения производительности горизонтальной скважины.

Зарезка боковых стволов

Бурение боковых стволов применяется как метод повышения нефтеотдачи пластов и интенсификации добычи нефти, в основном, за счет улучшения гидродинамической связи скважины с пластом, а также с целью реанимации аварийных, не эксплуатируемых по геологическим причинам скважин с критическими значениями обводнённости и дебита нефти. Бурение боковых стволов может эффективно применяться на различных стадиях разработки залежей.

Бурение боковых стволов позволяет решить ряд важных задач:

Увеличить охват воздействием за счет вовлечения в разработку ранее неохваченных дренированием запасов - преимущественно в прикровельной части пласта, а также в низкопроницаемых пропластках;

Вовлечь в разработку зоны залежей, недоступные для других видов воздействия на пласт;

Существенно увеличить дебит нефти, особенно в низкопроницаемыхколлекторах, за счет увеличения поверхности взаимодействия скважины с пластом;

Высокообводненным, низкодебитным, аварийным и не эксплуатируемым по геологическим причинам скважинам. Благоприятными условиями для успешности зарезки бокового ствола является достаточно высокая нефтенасыщенная толщина, низкая расчлененность пласта и удалённость от воды (как пластовой, так и нагнетаемой).

К объектам, где данная технология может оказаться экономически не достаточно эффективной, относятся:

Высокопроницаемые пласты с большой эффективной толщиной;

Тонкие пласты с прослоями практически непроницаемых или малопроницаемых пород;

Трещиноватые нефтяные пласты, подстилаемые подошвенной водой, быстропрорывающейся по крупным вертикальным трещинам в скважины;

Продуктивные пласты с низкой величиной отношения вертикальной и горизонтальной проницаемостей породы;

Слабоизученные объекты разработки.

Массовое бурение боковых стволов на месторождениях Западной Сибири началась с 1998г. Успешность эксплуатации боковых стволов по оценкам ОАО «Сургутнефтегаз» в целом за весь период от бурения до окончания разработки залежи в среднем составляет 80%, по наклонно-направленным и пологим - 73%, по горизонтальным - 84% и по многоствольным горизонтальным - 100%.

Теоретически влияние боковых стволов на нефтеотдачу аналогично влиянию уплотняющего бурения, но с большей эффективностью. Бурение наклонно-направленного бокового ствола из уже пробуренной скважины равносильно одной дополнительной скважине. Скважину с пробуренным горизонтальным боковым стволом при проектировании разработки рассматривают как эквивалент трех скважин. Многоствольные скважины эквивалентны локальному уплотнению сетки скважин обычного профиля, кратному числу стволов.

Значительная часть объема бурения боковых стволов приходится на Самотлорское, Лянторское, Приобское и Ватинское месторождения (всего около трети всех проведенных операций). В масштабе округа областью применения боковых стволов служат длительно разрабатываемые объекты, отнесенные, главным образом, к неокомским отложениям.

За счет бурения боковых стволов с начала 2000-х гг в целом по округу обеспечено 55 млн. т нефти. Годовые объемы бурения имеют тенденцию к росту - за последние 10 лет они выросли почти в 2.5 раза. Между тем, удельная эффективность новых операций в указанный период снизилась вдвое - с 5.1 до 2.61 тыс. т. В среднем накопленная добыча нефти на 1 боковой ствол оценивается в 16 тыс. т, длительность эксплуатации - 3.5 года.

Нестационарное заводнение

Технология предусматривает увеличение упругого запаса пластовой системы путем периодического повышения и снижения давления нагнетания воды. Это является предпосылкой для возникновения внутри пласта нестационарных перепадов давления и соответствующих нестационарных перетоков жидкости между слоями (участками) разной проницаемости. При этом в полуцикл повышения давления нагнетания вода из слоев с большей проницаемостью внедряется в малопроницаемые слои, а в полуцикл снижения давления нефть из малопроницаемых прослоев перемещается в высокопроницаемую часть коллектора.

Продолжительности циклов должны быть неодинаковы, возрастая с некоторого минимального значения до максимальной экономически допустимой величины. Для полного капиллярного удержания воды в пористой среде при максимально возможной скорости извлечения нефти продолжительности циклов должны возрастать по квадратичной параболе.

Технология проходила испытания на месторождениях различных нефтедобывающих районов - Урало-Поволжья, Западной Сибири, Украины, Белоруссии и т.д. Первый этап промышленного внедрения метода охватывает период с 1965 г. по 1978 г. Особенностью этого этапа является перевод на циклическое заводнение отдельных участков и блоков месторождений, циклическое заводнение осуществлялось на базе существующей системы ППД при линейном заводнении.

Процесс нестационарного нагнетания воды с целью обеспечения колебаний в пласте в основном осуществлялся делением рядов нагнетательных скважин на примерно равные группы и созданием по ним разнофазных условий нагнетания. Колебания расхода по группам скважин создавались двумя способами:

1) при безостановочной работе всех нагнетательных скважин по смежным группам попеременно создавались разные фазы расхода воды изменением давления на устье скважин; такой способ применялся на Абдрахмановской, Азнакаевской и Южно-Ромашкинской площадях Ромашкинского месторождения; на Самотлорском, Вагинском и Меги-онском месторождениях Западной Сибири;

2) при попеременном отключении смежных групп скважин - при полной остановке одних групп по другим группам обеспечивалось увеличение приемистости; такой способ был рекомендован на Восточно-Сулеевской и Алькеевской площадях Ромашкинского месторождения, на участках месторождений Шаимского и Сургутского районов Западной Сибири, Украины, Самарской области. Длительность фаз противоположного знака несколько отличалась от расчетной и была равна в среднем 15 сут (полуциклы по 15 сут). Такие симметричные циклы применялись на месторождениях Урало-Поволжья, Украины, на месторождениях Правдинском и Усть-Балыкском (Солкинская площадь) Западной Сибири. На большинстве месторождений Западной Сибири длительность фазы уменьшения нагнетания была обычно меньше противоположной фазы.

Такая организация процесса удобна для рядных систем разработки; кроме того, при этом создаются условия для частичной смены направлений фильтрационных потоков.

Вместе с тем практически полностью отсутствовал резерв увеличения мощности системы ППД, в результате чего средние уровни нагнетания при циклике составляли 60...80 % доциклического уровня, что явилось отклонением от программы ОПР.

Был получен прирост добычи нефти, снижена обводненность продукции, в промысловых условиях подтвердились теоретические предпосылки применения циклического заводнения, были уточнены критерии применимости этого метода. Были выделены области параметров пластов и режимов работы скважин, при которых с высокой степенью надежности можно рассчитывать на максимальную эффективность циклического заводнения:

Для соотношения средних уровней компенсации: от 60 до 100%;

Для времени начала нестационарного воздействия: до 10 лет;

Для послойной неоднородности: более 0,5;

Для начальной нефтенасыщенности: от 55 до 75;

для средней проницаемости пласта: от 50 до 600 мД.

Применение нестационарного заводнения целесообразно на невыдержанных по площади, зонально неоднородных пластах большой площади, при сформированной системе заводнения на стадии снижающейся добычи. Данному критерию на территории ХМАО удовлетворяют пласты горизонтов АС-АВ и в меньшей степени - БС-БВ (последние выработаны в большей степени). Массовое применение гидродинамических методов отмечено в т.ч. на Федоровском, Приобском и Северо-Лабатъюганском месторождениях (25-30% мероприятий).

Всего с начала 2000-х гг вклад нестационарного заводнения в добычу нефти по округу составил 48 млн. т. При этом удельная эффективность мероприятий низкая: в последние 7 лет она составляла 300-500 т на скважинно-операцию. Падение эффективности нестационарного заводнения связано с выходом объектов, на которых оно применяется, на завершающую стадию разработки, сопровождающуюся расформированием системы заводнения.

Высоковязкой нефти

При разработке залежей высоковязких нефтей первой проблемой является быстрое, часто «прорывное» обводнение скважин на фоне низких темпов отбора и низкой выработки запасов объекта. В отсутствие интенсификации, по причине высокой вязкости нефти, а также низким величинам пластового давления (ограничивающим депрессию), входные дебиты скважин оцениваются в 0.5-1 т/сут на каждые 10 мД проницаемости. Т.е. при относительно высокой проницаемости в 100 мД дебит не превысит 10 т/сут. Наличие контактных зон ограничивает область применения гидроразрыва на пластах высоковязкой нефти, на территории ХМАО отнесенных к сеноманскому НГК. В этих условиях перспективно применение таких технологий, как нагнетание горячей воды, нагнетание водяного пара, нагнетание загущенной полимером воды, сочетание нагнетания загущенной воды и бурения скважин с пологим или горизонтальным положением ствола в пласте, а также термогазохимическое воздействие (нагнетание О 2)

При нагнетании горячей воды или пара за счет повышения температуры пластовой системы снижается вязкость нефти, уменьшается обводненность, продуктивность скважин по нефти растет. Однако данная технология имеет свои недостатки – тепловые методы воздействия эффективны только при достаточно плотной сетке скважин (до 4 га/скв. – расстояние между скважинами 200 м), кроме того, они характеризуются высокой стоимостью вследствие необходимости подогрева воды.

Другой эффективный метод воздействия – нагнетание растворов полимера. Эффект заключается в снижении темпов обводнения добывающих скважин, что достигается за счет увеличения вязкости вытесняющего агента (снижении его подвижности относительно нефти) и выравнивания фронта вытеснения – частичной изоляции высокопроницаемых промытых каналов. Обязательное условие для применения данной технологии – хорошие фильтрационно-емкостные свойства пласта для обеспечения достаточной продуктивности добывающих и приемистости нагнетательных скважин. Ограничением для данной технологии является температура пласта – полимеры сохраняют свои свойства при температуре не выше 90°С.

Поскольку высоковязкая нефть является тяжелой, можно выделить еще один вопрос – низкие товарные качества нефти. Следствием являются меньшая цена, большие затраты на переработку и, в итоге, низкая экономическая привлекательность разработки таких запасов. В качестве современных технологий можно предложить газовые и термогазовые методы воздействия, эффект от применения которых заключается в окислении нефти, снижении ее плотности и уменьшении доли тяжелых фракций. Кроме того, данный вид воздействия увеличивает продуктивность скважин за счет снижения вязкости нефти. Применение данной технологии требует специфического оборудования – насосно-компрессорные станции различной мощности, построение сети газопроводов, оборудование по подготовке агента воздействия.

Нефтеотдачи

Технологии физико-химического воздействия основаны на нагнетании

высокомолекулярных составов и направлены на повышение коэффициента нефтеотдачи за счет обеспечения равномерного вытеснения нефти из неоднородного продуктивного пласта. Эффект достигается за счет перераспределения потоков в пластах вследствие проникновения композиции вглубь пласта на значительные расстояния.

При нагнетании химических реагентов потокоотклоняющего свойства, в соответствии с законами подземной гидродинамики, происходит их продвижение в наиболее проницаемые прослои перфорированного интервала. В условиях разработки пласта за счет искусственного заводнения (нагнетания воды) эти прослои одновременно являются и в наибольшей степени промытыми водой. Взаимодействие нагнетаемого реагента с водой приводит к изменению гидродинамических характеристик последней и приводит к снижению ее подвижности. Соответственно, суммарный приток воды в скважину (обеспечиваемый главным образом за счет промытых прослоев) снижается без ущерба для притока нефти.

В числе технологий, основанных на физико-химическом воздействии, можно выделить нагнетание полимеров, биополимеров (БП), сшитых полимерных систем (СПС), полимердисперсных суспензий (ПДС), а также комплексное применение щелочей, поверхностно-активных веществ (ПАВ) и полимеров.

Наиболее широкое применение получил полимер ПАА (полиакриламид).

Полиакриламиды, используемые в полимерном заводнении, подвергаются частичному гидролизу, в результате чего анионные (отрицательно заряженные) карбоксильные группы (-COO-) оказываются разбросанными вдоль основной цепи макромолекулы. По этой причине полимеры называются частично гидролизованными полиакриламидами. Обычно степень гидролиза составляет 30-35% акриламидных мономеров; поэтому молекула частично гидролизованного полиакриламида отрицательно заряжена, что объясняет многие ее физические свойства.

Эта степень гидролиза была выбрана с таким расчетом, чтобы оптимизировать определенные свойства, как например, растворимость в воде, вязкость и удерживающую способность. Если степень гидролиза слишком мала, полимер не будет растворяться в воде. Если велика, его свойства будут слишком чувствительны к действию минерализации и жесткости.

В России потокоотклоняющие технологии применяются достаточно широко. В 2000-е годы среднегодовой охват действующего фонда ГТМ с их использованием составил 5.5%, что при численности действующих скважин порядка 90 тыс. ед. равносильно нескольким тысячам скважинно-операций в год. В то же время существует ряд проблем, препятствующих более масштабному использованию данной технологии.

Одним из факторов, ограничивающих применение полимерных технологий на месторождениях России, является высокая стоимость рабочего агента - ПАА. В настоящее время в стране используется импортный ПАА, стоимость которого составляет около 3 тыс. долл./т. Масштабы применения полимерных технологий в будущем будут определяться как возможностью снижения стоимости рабочего агента (в результате использования отечественного ПАА или альтернативного агента), так и динамикой мировых цен на нефть и налоговой политикой государства.

Кроме того, на некоторых месторождениях Западной Сибири применение полимерного заводнения имело низкую эффективность в связи с разбалансированностью системы разработки участка и низкой текущей компенсации отборов (менее 30 %). Во многих случаях было проведено недостаточное количество лабораторных испытаний, что сказалось на большом отклонении фактических данных от проектных. Кроме того, существует проблема некачественного контроля над продвижением химических реагентов в пласте.

Наконец, реагенты, используемые для физико-химического воздействия подвержены механической (под действием высоких скоростей потока) и термической деструкции. В последнем случае разрушение «гелевого» экрана происходит по мере роста температуры или в силу ее высокого начального значения. Следствием является подключение пропластка снова в разработку и отключение низкопроницаемых пропластков. Кроме того, процесс разрушения геля ускоряется за счет окислительных процессов под действием растворенного кислорода воздуха, привнесенного в систему через эжектор при дозировании ПАА в поток нагнетаемой в пласт воды.

Кроме пластовой температуры, на деструкцию полимеров также рН или жесткость воды. При нейтральном рН деструкция очень часто бывает незначительной, тогда как при очень низком или высоком рН, и особенно при высоких температурах, она бывает значительной. В случае частично гидролизованных полиакриламидов гидролиз разрушит тщательно подобранную степень гидролиза, присутствующую в исходном продукте.

Перечисленные проблемы могут быть решены использованием зарубежного опыта применения физико-химических МУН: таких его положений, как системность воздействия (вместо одиночных операций) и использование комплексных технологий – дающих эффект по нескольким направлениям и оттого менее чувствительным к неблагоприятным условиям.

Примером комплексной технологии служит одновременное нагнетание с полимерами поверхностно-активных веществ и щелочей. При этом щелочь взаимодействует с кислой нефтью, в результате чего выделяется поверхностно-активное вещество. В свою очередь, ПАВ снижает поверхностное натяжение на границе «нефть-вода», способствуя увеличению коэффициента вытеснения. Действие полимера аналогично эффекту традиционных физико-химических методов и выражается в уменьшении подвижности воды.

Системный характер эффекта от физико-химического воздействия достигается в тех случаях, когда оно осуществляется как модификация традиционного заводнения - с максимальным охватом нагнетательного фонда, а не отдельными краткосрочными операциями.

Специалисты концерна Shell используют технологии комплексного физико-химического воздействия на месторождениях США с 80-х годов. Первые испытания, проведенные на месторождении Уайт Касл, штат Луизиана, США, продемонстрировали эффективность технологии. Кроме того, положительный эффект в 1989 году получен на нескольких скважинах Лос-Анджелеса, где 38% нефти, оставшейся после других методов заводнения, было добыто в результате комплексного физико-химического заводнения.

На месторождениях Китая, таких как Дацин, Шенгли и Карамай, комплексное физико-химическое воздействие применяется примерно с середины 90-х годов. Воздействие осуществляется чередованием нагнетания полимерных растворов и ASP-систем в суммарных накопленных объемах, сопоставимых с поровым объемом пласта. Прирост коэффициента извлечения нефти за счет воздействия составляет 15-25%.

Получено значительное увеличение нефтедобычи с помощью комплексного физико-химического воздействия в Омане, на месторождении Мармул. Добыча на нем велась в течение 25 лет, однако извлечено было лишь 15% от запасов по причине высокой плотности и вязкости нефти. Данное обстоятельство обусловило низкую эффективность заводнения. С начала 2010 года недропользователь месторождения Мармул – компания PDO - ведет нагнетание полимерного раствора в объеме 100 тыс. баррелей (15 тыс. м3) в сутки. В планах недропользователя достичь прироста добычи на 8 тыс. баррелей (более 1 тыс. т) в сутки и повышении КИН с 15 до 25%

По другим примерам, таким как индийское месторождение Вирадж и месторождения канадской провинции Саскачеван, внедрение технологий комплексного физико-химического воздействия только начато, однако и там, несмотря на экстремальные геолого-физические условия, прогнозируется существенный прирост нефтеотдачи.

Предпочтительными для комплексного физико-химического воздействия являются пласты с высокими коллекторскими свойствами, длительно разрабатываемые с применением заводнения и содержащие нефть умеренной вязкости. При высокой вязкости нефти) необходимо сочетание физико-химического воздействия с тепловым.

Интеллектуальные» скважины

Под этим понятием в практике разработки нефтяных месторождений понимают технологии одновременно-раздельной эксплуатации многопластовых объектов и бурения многоствольных горизонтально-разветвленных скважин. В обоих случаях цель заключается в распределении нагнетаемой воды в интервалы с низким охватом дренированием и ограничении бесполезной циркуляции воды в промытых прослоях и застойных зонах.

Известно, что одновременное нагнетание воды в несколько пластов, неоднородных по проницаемости, приводит к быстрому обводнению залежей, низкому охвату их воздействием и образованию водяных блокад отдельных невыработанных зон. При этом ускоренное продвижение фронта вытеснения нефти водой по высокопроницаемым пластам приводит к прорывам воды к забоям добывающих скважин и как следствие возрастают объем попутно добываемой воды и затраты на ее нагнетание. Это в лучшем случае приводит к повышению себестоимости добычи нефти, а в худшем случае - выводу обводненной скважины из эксплуатации вместе с потерей неосвоенных запасов нефти, оставшихся в низкопроницаемых пластах. Практика одновременного нагнетания воды в несколько пластов приводит также к потере информации о фактических объемах нагнетаемой воды в каждый из пластов.

Тема: Перспективы разработки трудноизвлекаемых запасов республике, и в целом по России

Тип: Реферат | Размер: 146.70K | Скачано: 50 | Добавлен 12.11.14 в 15:04 | Рейтинг: 0 | Еще Рефераты

Вуз: Альметьевский государственный нефтяной институт

Год и город: Альметьевск 2013

Введение 3

1. Перспективы ТИЗ. Недропользование и развитие ресурсной базы в РТ и в России 4

2. Перспективы развития нефтяной промышленности 9

3. Научное обеспечение новых технологий разработки нефтяных месторождений с трудноизвлекаемыми запасами 13

Заключение 22

Список использованной литературы 23

ВВЕДЕНИЕ

Основным резервом поддержания уровней добычи нефти во многих регионах Российской Федерации в современных условиях развития отрасли являются трудноизвлекаемые запасы нефти (ТИЗ). Если в начале 60-х гг. доля трудноизвлекаемых запасов в общем балансе СССР/России составляла примерно 10%, то уже в 90-е гг. она превысила 50% и продолжает увеличиваться. Нефтяная промышленность Татарстана за 60 лет после открытия первого промышленного месторождения нефти пережила рост, 7-летнюю стабилизацию с уровнем добычи более 100 млн. т/год, последующее непрерывное падение на протяжении 19 лет, а затем после небольшого роста (1995 г.) вновь наступил период стабилизации добычи па уровне свыше 25 млн. т/год. Во многом это явилось результатом реализации ряда программ повышения нефтеотдачи на объектах с трудноизвлекаемыми запасами нефти. Именно поэтому опыт многолетнего освоения здесь залежей и пластов с ТИЗ и повышения эффективности их разработки весьма ценен.

Актуальность проблемы. В сложившейся в России экономической ситуации проблема повышения эффективности извлечения запасов нефти па основе применения новейших технологий доразведки, разработки и доразработки месторождений в старых нефтедобывающих районах приобрела особую актуальность. Стабильность уровня нефтедобычи на месторождениях, вступивших в заключительные стадии разработки, определяется рациональным использованием оставшихся трудноизвлекаемых запасов. По существу запасы всех месторождений на поздней стадии разработки превращаются в трудноизвлекаемые. Сейчас около половины, добываемой в стране нефти обеспечивается за счет трудноизвлекаемых запасов.

Цель данной работы: исследование научного обеспечения новых технологий разработки нефтяных месторождений с трудноизвлекаемыми запасами. Из поставленной цели вытекают следующие задачи: рассмотреть перспективы развития нефтедобычи в стране, и динамику трудноизвлекаемых запасов нефтеотдачи месторождений России.

  1. ПЕРСПЕКТИВЫ ТИЗ. НЕДРОПОЛЬЗОВАНИЕ И РАЗВИТИЕ РЕСУРСНОЙ БАЗЫ В РТ И В РОССИИ

Для России - страны с колоссальным природно-ресурсным потенциалом - вопросы развития отношений, связанных с предоставлением прав на пользование недрами и контролем за выполнением условий их предоставления, вопросы использования отношений в процессе недропользования для регулирования более широкого спектра социально-экономических процессов являются одними из важнейших. На наш взгляд, в ходе проводимых экономических реформ комплексный характер отношений в процессе недропользования, сфера их действия не осознаны и не использованы в достаточно полной мере.

В России уже в течение длительного времени (с 1994 г.) приросты запасов углеводородного сырья не компенсируют добычу нефти и газа. Только с 1994 по 2000 г. не восполненная добыча жидких углеводородов составила около 700 млн. % газа - более 2,3 трлн. м3. В последующие годы это отставание только усиливалось. Так, если за 1997-2001 гг. прирост промышленных запасов нефти, включая газовый конденсат, обеспечил возмещение ее добычи на 86 %, то в 2002 г. - лишь на 64 %, составив 243 млн. т при добыче 421,4 млн. т. Кроме того, ухудшается качество сырьевой базы. Доля трудноизвлекаемых запасов в России превысила 55 %. Доля запасов, степень выработки которых составляет более 80 %, превышает 25 % разрабатываемых нефтяными компаниями запасов, а доля запасов обводненностью более 70 % составляет более 30 %. С 1991 по 2001 г. в структуре извлекаемых запасов число мелких месторождений увеличилось на 40 %, в то время как число уникальных и крупных снизилось более чем на 20 %. В целом 80 % месторождений, находящихся на государственном балансе, относятся к категории мелких.

Причин неблагоприятного состояния сырьевой базы много, все они хорошо известны специалистам. Это и резко сократившиеся объемы региональных геолого-разведочных работ на нефть и газ вследствие общего снижения государственных средств, выделяемых на указанные цели, и отсутствие соответствующей мотивации у нефтегазовых компаний - недропользователей, и слабый контроль со стороны государства за обеспечением рационального использования недр и эффективностью разработки месторождений, а также отсутствие необходимых полномочий по государственному регулированию отношений недропользования у федеральных органов исполнительной власти, осуществляющих государственную политику в области добычи горючих полезных ископаемых. Кроме того, непрозрачность, коррупция, высокие риски, связанные, в частности, с возможностью отзыва лицензий на добычу полезных ископаемых у недропользователя, снижают инвестиционную привлекательность этой сферы деятельности.

До 2002 г. регионы активно участвовали в инвестировании воспроизводства минерально-сырьевой базы. Их вложения в геологоразведку в 2-3 раза превышали объемы федеральных инвестиций. Даже в 2003 г, когда региональные бюджеты были практически лишены источников финансирования геологии, они в сумме вкладывали примерно столько же средств, сколько и федеральный бюджет. С упразднением отчислений на воспроизводство минерально-сырьевой базы объемы геологоразведочных работ в основных нефтедобывающих регионах России снизились в 1,5-1,8 раза. При этом считалось, что добывающие компании должны самостоятельно и за счет собственных средств осуществлять геологоразведочные работы и обеспечивать прирост запасов полезных ископаемых. Однако соответствующих стимулов компании-недропользователи не получили. Следовательно, законодательство должно стимулировать эту деятельность, имеющую важное государственное значение.

Сложившийся рыночный механизм ведения хозяйства без реализации мер государственного регулирования сферы недропользования не обеспечивает комплексного решения стратегических задач использования минерально-сырьевой базы. В результате сложилось многолетнее отставание в региональных работах, как по важнейшим нефтегазодобывающим регионам, так и по новым перспективным нефтегазоносным провинциям. По существу упущено время для подготовки новых регионов к проведению широкомасштабных поисково-оценочных работ, а в дальнейшем и по подготовке промышленных запасов углеводородов.

При интенсификации до предела добычи нефти в старых регионах практически ничего не делается для подготовки им смены. Можно как угодно критиковать советскую плановую систему, но при ней всегда учитывалась перспектива. Это было традицией развития минерально-сырьевой базы страны.

В связи с указанным как можно скорее должны быть выполнены работы по изучению новых регионов, которые бы обеспечили стабилизацию положения в этой области. Тем более что такие регионы в стране еще есть: прежде всего Каспий, Восточная Сибирь, шельфы окраинных морей. Промедление в решении этой важнейшей задачи может привести к потере национальных топливно-энергетических ресурсов. Однако успешное решение данной задачи невозможно без принятия новых законов, которые бы стимулировали выход компаний-недропользователей в эти регионы.

В целом система государственного управления недропользованием должна строиться на базе стратегических интересов государства как такового и субъектов РФ с учетом экономических интересов хозяйствующих субъектов. Для этого необходимо:

Провести реальный мониторинг всех выданных лицензий и всей системы лицензирования недр;

Выработать общую стратегию управления недропользованием с ориентацией на формирование процедур и принципов объективизации издержек недропользователей;

Обеспечить стабильный налоговый режим недропользования, не менять (без крайней необходимости) действующие законы и правила.

Сырьевая база страны должна развиваться по схеме расширенного воспроизводства. Заявления об избыточности запасов у российских компаний и предложения о введении экономических санкций на запасы, превышающие восьми - девятилетнюю обеспеченность, ошибочны, по сути, и опасны для экономического развития страны.

Перспективы развития нефтедобычи.

Перспективные уровни добычи нефти в России будут определяться в основном следующими факторами: спросом на жидкое топливо и уровнем мировых цен на него, развитостью транспортной инфраструктуры, налоговыми условиями и научно-техническими достижениями в разведке к разработке месторождений, а также качеством разведанной сырьевой базы.

Перспективные объемы добычи нефти в России будут существенно различаться в зависимости от того или иного варианта социально-экономического развития страны. При сочетании благоприятных внутренних и внешних условий и факторов (оптимистический и благоприятный варианты развития) добыча нефти в России может составить порядка 460-470 млн.т. в 2010 г. и возрасти до 500-520 млн. т. к 2020 г. При внешних и внутренних условиях, формирующих умеренный вариант социально-экономического развития страны, добыча нефти прогнозируется существенно ниже - до 450 млн. т. в 2010 г. и до 460 млн. т. в 2020 г. Наконец, в критическом варианте рост добычи нефти может продолжаться лишь в ближайшие 1-2 года, а затем ожидается падение добычи: до 360 млн. т. к 2010 г. и до 315 млн. т. к 2020 г.

Добыча нефти будет осуществляться, и развиваться в России как в традиционных нефтедобывающих районах, таких как Западная Сибирь, Поволжье, Северный Кавказ, так и в новых нефтегазоносных провинциях на Европейском Севере (Тимано-Печорский регион), в Восточной Сибири и на Дальнем Востоке, на юге России (Северо-Каспийская провинция).

Главной нефтяной базой страны на весь рассматриваемый период останется Западно-Сибирская нефтегазоносная провинция. Добыча нефти в регионе будет увеличиваться до 2010 г. по всем вариантам, кроме критического, а затем несколько снизится и составит в 2020 г. 290-315 млн. т. В рамках критического варианта разработка месторождений с трудноизвлекаемыми запасами станет малорентабельной, что приведет к значительному падению добычи в регионе.

В Волго-Уральской провинции и на Северном Кавказе добыча нефти будет падать, что обусловлено исчерпанием сырьевой базы. В умеренном и критическом вариантах добыча в этих регионах будет снижаться более интенсивно.

В целом в Европейской части России добыча нефти (включая шельфы) будет уменьшаться и составит к 2020 г. 90-100 млн.т. (против 110 млн.т. 2002г).

Исходя из современного и прогнозируемого качества сырьевой базы отрасли, необходимы:

Значительная интенсификация геологоразведочных работ, чтобы обеспечить необходимый прирост добычи из неоткрытых пока месторождений (государственная программа лицензирования недр должна с учетом вероятных рисков обеспечить достижение необходимых для устойчивого развития отрасли уровней геологоразведочных работ и инвестиций в них);

Повышение коэффициентов нефтеизвлечения с целью повышения извлекаемого потенциала и текущей добычи разрабатываемых месторождений.

2 ПЕРСПЕКТИВЫ РАЗВИТИЯ НЕФТЯНОЙ ПРОМЫШЛЕННОСТИ

Республика Татарстан является старейшим нефтедобывающим районом страны. Имеются положительные факторы, позволяющие оптимистично оценивать перспективы подготовки новых запасов в старых нефтедобывающих районах.

Практика показывает, что прогнозные ресурсы и оценки по мере изучения непрерывно возрастают и Республика Татарстан классическое подтверждение этого. В Татарстане за годы рыночных реформ обеспечивалось расширенное воспроизводство запасов нефти против 20-50% в предыдущие годы. Обеспеченность разведанными запасами текущей добычи при ее непрерывном росте возрастала и в настоящее время выше, чем по стране. В республике регулярно проводится переоценка прогнозных ресурсов нефти. В результате начальные суммарные (извлекаемые) ресурсы возросли за последнее десятилетие на 21 %. Неопоискованные извлекаемые ресурсы оцениваются выше, чем 30 лет назад. По мере изучения они будут возрастать. Планируется дальнейшая переоценка прогнозных ресурсов, которая проводится один раз за 5 лет. Как правило, каждая переоценка прогнозных ресурсов приводит к их увеличению.

Во-вторых, при оценке ресурсов коэффициент извлечения нефти (КИН) принимается обычно равным 30-35 %. Предполагается, что при освоенных технологиях в недрах после выработки извлекаемых запасов останется в 2 раза больше нефти, чем будет добыто к концу разработки месторождений.

Хотя для Республики Татарстан характерна высокая опоискованность недр, за годы рыночных реформ воспроизводство запасов в лом улучшилось и по сравнению со среднероссийским с более благоприятным. Однако в общем объеме прирост запасов за счет новых открытий снизился с 49,2 до 13 %/год. Несмотря на достаточную обеспеченность разведанными запасами нефти в стратегии значительное внимание уделено вопросам подготовки новых запасов. Это объясняется высокой долей трудноизвлекаемых запасов нефти, составляющей 80 %. Стратегия воспроизводства запасов на длительную перспективу в старых нефтяных районах должна предусматривать проведение работ в трех направлениях:

Дальнейшее изучение и опоискование залежей нефти в традиционных объектах разведки (отложения девона и карбона).

Проведение широкомасштабных работ по повышению КИН, что может стать новым важнейшим направлением повышения ресурсной базы старых нефтедобывающих районов.

Геологическое изучение нефтегазоносности нетрадиционных объектов глубокозалегающих пород кристаллического фундамента и рифей-вендских осадочных отложений, пермских битумов.

В настоящее время в нефтяной промышленности Республики Татарстан работает 28 малых нефтяных компаний, добыча нефти по которым составляет от 10 тыс. до 500 тыс. т/год. В основном эти компании были созданы на основании Указа Президента Республики Татарстан об увеличении добычи нефти в 1997-1998 гг. На конкурсной основе им было передано 67 нефтяных месторождений, причем в основном с трудноизвлекаемыми запасами, содержащих высокосернистые нефти, большинство из которых было открыто 15-30 лет назад. Создание новых нефтяных компаний коренным образом изменило ситуацию с добычей нефти в республике появились новые инновационные технологии, конкуренция, новые МУН и методы интенсификации добычи. В 2004 г. малыми компаниями добыто более 4,8 млн. т. В ближайшие годы намечается довести добычу нефти по всем независимым нефтяным компаниям до 8 млн. т/год.

Опыт развития нефтяной промышленности Татарстана показал следующее

Оптимизация условий недропользования и налогообложения - ключ к решению проблемы ВМСБ и обеспечения потребностей страны в нефти и газе,

Налоговое стимулирование и дифференцированное налогообложение добычи нефти в зависимости от горно-геологических условий и пенсии истощения запасов можно регламентировать и администрировать без коррупции;

Действующий закон «О недрах» позволяет дифференцировать НДПИ, стимулировать разработку «старых» и истощенных месторождений;

Если бережно относиться к недрам и по-хозяйски ими распоряжаться на уровне субъектов Федерации, то появляются огромные возможности для дальнейшего

С целью успешной реализации стратегии развития нефтегазового комплекса Республики Татарстан необходимо создать благоприятные условия, обеспечивающие необходимый прирост запасов и нефти, что возможно в результате принятия более совершенного закона «О недрах», проект которого находится на обсуждении.

Для успешной реализации энергетической стратегии Республики Татарстан до 2020 г. необходимо создать нормальные условия развития нефтяной промышленности. С этой целью следует:

Сохранить действующий механизм недропользования - совместное ведение Федерации и субъектов Российской Федерации по выдаче лицензий по принципу «двух ключей»: Российской Федерацией и субъектом Российской Федерации;

Предусмотреть возможность делегирования части полномочий федерального центра по регулированию недропользования на региональный уровень; передать региональным органам власти полномочия по распоряжению мелкими и средними месторождениями полезны ископаемых с извлекаемыми запасами нефти до 30 млн. т.;

Ввести дифференцированное налогообложение добычи нефти зависимости от горно-геологических и экономико-географических условий разработки нефтяных месторождений и товарного качеств нефти в недрах;

Для повышения эффективности освоения недр необходимо оста вить как конкурсную, так и аукционную форму доступа к недрам, каждая из них имеет преимущества и недостатки и может применяться зависимости от конкретных условий;

Для рационального использования ресурсов недр нужно усилить государственный контроль за выполнением оговоренных условий недропользования; это осуществимо через ежегодные дополнения к лицензионным соглашениям, в которых записываются годовые уровни добычи, воспроизводства запасов, объемы разведочного и эксплуатационного бурения; они берутся из утвержденных в установленном порядке проектных документов и авторских надзоров; контролируете выполнение органами МПР РФ; положительный опыт имеется в Республике Татарстан;

В законе «О недрах» необходимо предусмотреть стимулировании ВМСБ в результате отмены платежей на проведение ГРР за счет собственных средств недропользователей, заявочного характера представления участков для рисковых нефтепоисковых работ, оплаты недропользователями исторических затрат государства на участках недр только после выхода проекта на окупаемость и получения достаточных при былей, упрощения процедуры оформления открытий, полного финансирования региональных и функциональных геологических исследований за счет государства;

Утвердить на правительственном уровне «Правила разработки нефтяных месторождений» и для рационального использования запасов углеводородного сырья государственную комиссию по запасам и Цен тральную комиссию по разработке месторождений горючих полезны ископаемых подчинить непосредственно Правительству России.

3. НАУЧНОЕ ОБЕСПЕЧЕНИЕ НОВЫХ ТЕХНОЛОГИЙ РАЗРАБОТКИ НЕФТЯНЫХ МЕСТОРОЖДЕНИЙ С ТРУДНОИЗВЛЕКАЕМЫМИ ЗАПАСАМИ

Доля трудноизвлекаемых запасов в низкопроницаемых коллекторах, в подгазовых зонах и с вязкими нефтями, продолжает увеличиваться и сейчас составляет около 60% (рис. 3.1).

К сожалению, качество остаточных запасов ухудшается еще и по причине более активной выработки именно хороших, активных запасов. Если активные запасы выработаны к настоящему времени в среднем на 75%, то трудноизвлекаемые только на 35%.

Рисунок 3.1 - Динамика трудноизвлекаемых запасов нефтеотдачи месторождений России

Из рисунка 3.1 можно видеть, что с увеличением доли трудноизвлекаемых запасов проектный коэффициент нефтеотдачи снижался многие годы, и только в последние годы стал незначительно расти.

Эти зависимости достаточно ярко иллюстрируют сложившуюся многолетнюю тенденцию в разработке нефтяных месторождений - негативное изменение структуры запасов многие годы, к сожалению, не компенсировалось совершенствованием используемых технологий нефтеизвлечения.

В некоторых случаях это было связано с отсутствием технологических решений по эффективному нефтеизвлечению для тех или иных геолого-физических условий, что в последние годы усугублялось тем, что соответствующие научно-исследовательские работы были ограничены. Однако гораздо чаще известные новые технологии недропользователями не используются. Причина, как правило, та, что их применение связано с большими затратами, особенно в начальный период разработки месторождения, и недропользователи зачастую избегают необходимости их использования. Не вполне оправдались и надежды на приход в Россию новых технологий нефтеизвлечения в связи с работой на месторождениях страны иностранных компаний.

Особую проблему в стране составляют заводненные месторождения - сейчас средняя обводненность добываемой продукции составляет около 86%.

Учитывая, что основным методом разработки месторождений страны является заводнение, количество остаточных запасов нефти в обводненных пластах будет постоянно возрастать. Для доизвлечения этих запасов необходимо также использовать более совершенные технологии.

Принимая во внимание складывающуюся структуру запасов и перспективы их развития, можно утверждать, что значительную роль в приросте извлекаемых запасов страны должны играть увеличение нефтеотдачи из трудноизвлекаемых запасов, а также запасов в заводненных пластах.

Нужно отметить, что международные нефтедобывающие компании обращают особое внимание на прирост извлекаемых запасов за счет применения новых технологий нефтеизвлечения: технологии повышения нефтеотдачи обеспечивают от 4 до 12% прироста извлекаемых запасов.

По оценкам зарубежных исследователей средняя проектная нефтеотдача в мире сейчас составляет около 30%, в США - 39%, при этом средняя реальная нефтеотдача в будущем прогнозируется в размере 50 - 60%.

Можно выделить три крупных блока основных методов разработки нефтяных месторождений: естественный режим, вторичные методы и третичные методы (методы увеличения нефтеотдачи).

Широкое применение заводнения позволило значительно повысить эффективность разработки нефтяных месторождений страны. Дополнительные увеличения нефтеотдачи пластов при заводнении в определенных условиях обеспечивают так называемые гидродинамические методы воздействия: циклическое воздействие с переменой фильтрационных потоков, системная технология реализации ОПЗ, горизонтальные скважины, гидроразрыв пласта в системе скважин и другие.

Вместе с тем, по мнению большинства специалистов, кардинального повышения среднего коэффициента нефтеотдачи в стране особенно в трудноизвлекаемых запасах можно достичь только при существенном увеличении масштабов применения «третичных» методов: тепловых, газовых и химических (достигаемая нефтеотдача 35 - 70%).

Вместе с тем методы увеличения нефтеотдачи являются гораздо более сложными, по сравнению с заводнением, процессами, основанными на механизмах дополнительного извлечения нефти из пористой среды. Технологии этих методов требуют, как предварительного тщательного научного обоснования применительно к конкретным условиям, так и последующего научного сопровождения при их применении с использованием новых и принципиально новых средств контроля и регулирования.

Все это требует дополнительных затрат. Вместе с тем, реальные вложения на создание новых технологий в отечественных компаниях на порядок меньше, чем в зарубежных.

Однако зарубежный да и отечественный опыт свидетельствует, что сложность и дополнительные затраты в конечном счете компенсируются повышенной эффективностью.

Имеются сведения, по более чем, 1500 проектам МУН в мире. Годовая добыча оценивается в 120 - 130 млн тонн.

В США на начало 2010 г. в работе было 194 проекта по повышению нефтеотдачи. Их число с 1998 г. несколько уменьшилось, изменяясь от 199 в 1988г., до 143 - в 2004 г. и 194 - в 2010 г., но, при этом произошло их укрупнение. Общая добыча нефти за счет этих методов составляет 34,4 млн.т/год. Особенно важно отметить, что доля добычи нефти за счет «третичных» методов в общей добыче в США составляет около 12%.

Рассматривая состояние и перспективы применения методов увеличения нефтеотдачи, следует сказать и об отечественном опыте активного внедрения этих методов в 80-е годы прошлого столетия.

Толчком к развитию проблемы явилось специальное постановление Правительства страны (1976 г.), которое определяло объемы дополнительной добычи нефти за счет применения «третичных» методов увеличения нефтеотдачи, а также объемы выпуска в стране необходимых для этого материально-технических средств. Было также предусмотрено экономическое стимулирование осуществления опытно-промышленных работ нефтедобывающими предприятиями. С целью концентрации усилий по решению данной проблемы был создан «Межотраслевой научно-технический комплекс «Нефтеотдача». Организационная структура комплекса обеспечивала как научное сопровождение проблемы, так и обеспечение реализации программы опытных работ.

Переданные в структуру РМНТК сервисные компании («Термнефть», «Союзнефтепромхим», «Союзнефтеотдача», «Татнефтебитум») выполняли на опытных промыслах нефтедобывающих предприятий специальные комплексы работ, которые ранее не входили в практику деятельности предприятий (закачка химических агентов, генерирование и закачка теплоносителей и воздуха, закачка углеводородного газа, монтаж специального оборудования).

За сравнительно короткий период дополнительная добыча нефти за счет «третичных» методов возросла до 11 млн т/год. Научное сопровождение проблемы осуществлялось через «ВНИИнефть» с обеспечением соответствующего финансирования.

С переходом нефтяной промышленности на новую систему хозяйствования перестали действовать механизмы стимулирования проблемы увеличения нефтеотдачи, существенно уменьшилась активность научных исследований, объемы применения методов стали снижаться.

Сейчас добыча за счет «третичных» методов лишь незначительно превышает 1,5 млн т/год. В последние годы на месторождениях страны были начаты и развиты несколько проектов по применению тепловых и газовых методов воздействия. Вместе с тем, на наш взгляд, есть ряд проблем скорее прикладного порядка, исследование которых не может откладываться, если ставить цель увеличения объема освоения трудноизвлекаемых запасов в ближайшие годы. Среди этих проблем:

Регулирование продвижения оторочек растворов химреагентов по пласту;

Снижение адсорбции химических реагентов на пористой среде;

Создание адресных композиций химреагентов для конкретных условий пласта;

Внутрипластовое снижение вязкости нефти химреагентами;

Моделирование процессов фильтрации различных агентов нефтеизвлечения;

Регулирование процесса внутрипластового окисления нефти;

Определение влияния свойств пористой среды и закачиваемых в пласт агентов на кинетику окисления при закачке воздуха высокого давления;

Определение влияния температуры на капиллярные свойства пористой среды;

Определение влияния температуры на кривые фазовых проницаемостей для различных пористых сред;

Оптимизация объемов газовых агентов при сочетании закачки газа и воды;

Использование пенных систем и других реагентов для регулирования физико-химических, тепловых и газовых методов;

Оценка эффективности закачки слабоминерализированной воды в пласты, изменение смачиваемости пористой среды;

Оценка эффективности методов увеличения нефтеотдачи по промысловым данным и многие другие.

Объемам и уровню работ по применению методов увеличения нефтеотдачи и освоения трудноизвлекаемых запасов соответствует, к сожалению, и их текущее научное обеспечение.

Хотя отсутствие федеральных и отраслевых программ по данной проблеме не позволяет конкретно представить объемы исследований по отдельным методам, но косвенные показатели (особенно в сопоставлении с зарубежными компаниями) достаточно красноречивы.

Так по имеющимся данным, расходы на научно-исследовательские и опытно-конструкторские работы в зарубежных нефтегазовых компаниях в 6 - 10 раз больше, чем в крупных российских компаниях.

Рисунок 3.2 - Объемы финансирования НИОКР на одного исследователя, тыс. долл.

По данным Г.И. Шмаля, компания «Шелл» затратила на НИОКР в 2007 г. - 1,2 млрд долл., в 2008 г. - 1,3 млрд долл., в 2009 г. - 1 млрд долл. Затраты же всех нефтяных компаний России вместе с Газпромом на НИОКР составляли в том же году 250 млн. долл. Рассматривая более широко проблему научного обеспечения создания новых технологий, отметим необходимость участия в ее финансировании как государства так и бизнеса. Можно видеть (рис. 3.2), что в России финансирование НИОКР значительно меньше, чем в других странах - как со стороны государства, так, и особенно, со стороны бизнеса.

Интересны данные по патентованию в нефтегазовом секторе, которые еще раз подчеркивают зависимость этого показателя от объемов финансирования НИОКР: количество зарегистрированных патентов в российских компаниях в десятки раз меньше, чем в зарубежных (рис. 3.3).

Рисунок 3.3 - Количество зарегистрированных патентов нефтяными и газовыми компаниями, шт.

В последнее время появился ряд обнадеживающих факторов для возможности ускоренного развития проблемы увеличения нефтеотдачи пластов с трудноизвлекаемыми запасами. Озабоченность состоянием полноты нефтеизвлечения на месторождениях страны высказана руководством страны.

Приняты постановления Правительства по экономическому стимулированию разработки месторождений с трудноизвлекаемыми запасами:

Нефти повышенной вязкости (более 20 мПа.сек);

Высокообводненними (более 85%);

С пластами низкой проницаемости (1,5-2,0; 1,0-1,5; менее 1,0 мкм 2 .10 -3).

К сожалению, реализация принятых документов встречает ряд практических трудностей, которые связаны с необходимостью создания обособленных систем сбора и подготовки нефти, что требует иногда значительных затрат. Что касается низко проницаемых пластов, то представленная редакция Постановления еще требует дополнительных уточнений, как по методике определения проницаемости (абсолютная или относительная), так и по возможности достижения такой точности диагностирования нефтяных пластов по проницаемости.

При рассмотрении перспектив усиления научного обеспечения отрасли иногда высказывается предложение возложить решение отраслевых проблем на нефтяные компании и их научные центры. Следует, однако, учитывать, что сосредоточенные в нефтяных компаниях научно-аналитические центры ориентированы на решение текущих прикладных задач, кроме того, общемировая практика показывает, что любая экономически развитая страна имеет свою промышленную политику, а промышленная политика без системно организованной отраслевой науки невозможна. Объясняется это тем, что горизонт технологического прогноза корпорации редко превышает 7 - 10 лет, фундаментальные же исследования обещают экономически значимый результат через 20 - 30 лет. В образовавшемся двадцатилетнем зазоре как раз и работает система прикладной (отраслевой) и академической науки - именно в этом временном промежутке задаются ориентиры для прорывных инноваций, передающихся на следующем шаге в подразделения НИОКР корпораций.

Известны также предложения о концентрации нефтяной науки в учебных университетах, как это отчасти практикуется в ряде зарубежных стран. Однако при этом надо учитывать тот факт, что отечественные университеты пока не имеют необходимой научно-технической и кадровой базы, а также, самое главное, опыта прикладных исследований, который создается многолетними усилиями.

Поэтому, как представляется, перспективы повышения эффективности разработки нефтяных месторождений страны и применение МУН связаны с необходимостью возрождения системы научного обеспечения этой проблемы на базе комплекса отраслевых и учебных институтов с привлечением в ряде случаев институтов АН России.

В целом можно следующим образом сформулировать предложения по активизации работ по созданию новых технологий для разработки трудноизвлекаемых запасов нефти необходимы:

Государственное регулирование проблемы;

Концентрация научных, методических и технологических усилий на основе научно-технических программ;

Создание научных Центров на базе отраслевых институтов и ВУЗов;

Организационно-финансовое обеспечение проблемы на основе государственных программ опытных и научно-исследовательских работ, лицензионных и проектных документов;

Совместные программы (пулы) нефтяных компаний по исследованию и испытанию МУН;

Научное сопровождение опытных работ.

На мой взгляд, реализация этих предложений позволит уже к 2025 г. извлекаемые запасы страны увеличить на 2 - 4 млрд тонн с годовой дополнительной добычей: 30 - 60 млн тонн/год.

ЗАКЛЮЧЕНИЕ

Вопросы освоения трудноизвлекаемых запасов нефти сопряжены с проблемой повышения коэффициента нефтеотдачи. В последние 25 лет КИН в России снизился с 42 до 27-28%, в то время как в США за тот же период КИН вырос с 32 до 40%, хотя структура запасов нефти там изначально хуже. Эта опасная тенденция связана с двумя причинами. Во-первых, трудноизвлекаемые запасы уже составляют более 50% запасов нефти России, а при их отработке КИН всегда ниже. Во-вторых, утвержденные проекты разработки главных месторождений России предусматривают традиционное заводнение залежей с характерным для него низким КИН, а не использование современных технологий увеличения нефтеотдачи. Об эффективности этих технологий свидетельствует опыт США, где, несмотря на истощенные недра, за счет инновационных технологий ежегодно добывается более 30 млн. тонн нефти. Но и в России, на старейшем Ромашкинском месторождении Татарстана, за счет применения этих методов ежегодная прибавка к объему добычи составляет 1,5 млн. тонн. К сожалению, это единственный пример в России.

Прирост запасов нефти, особенно в последние годы, в 2 раза превышает ее добычу. Созданные в Татарстане 24 новые независимые нефтяные компании уже обеспечили ускоренный ввод в разработку 36 нефтяных месторождений. Все нефтяные компании (без ОАО «Татнефть») в ближайшие годы будут добывать 8 - 8,5 млн. т/год. Крупнейшая нефтяная компания - ОАО «Татнефть», по объему годовой добычи входящая в четверку крупнейших нефтяных компании России и в число 30 ведущих нефтяных компаний мира, дает до 40 % поступлений в бюджет Республики Татарстан. Добывшая с начала разработки месторождений Татарстана около 2,7 млрд. т нефти, компания стабилизировала добычу нефти, обеспечив превышение прироста запасов над добычей в 2 раза. В настоящее время более 40 % нефти на месторождениях Татарстана добывается за счет внедрения современных технологий и методов повышения нефтеотдачи пластов. Неслучайно ценные бумаги ОАО «Татнефть» котируются на престижных Лондонской и Нью - Йоркской биржах.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Бурение и нефть. Август 2012. Специализированный журнал.

2. Дунаев В.Ф. Экономика предприятий нефтяной и газовой промышленности: учебник / В.Ф. Дунаев, В.Л. Шпаков. Н.П. Епифанова, В.Н. Лындин. - Нефть и газ, 2009. - 352 с.

3. Конторович А. Э., Коржубаев А. Г., Эдер Л. В. Стратегия развития нефтяного комплекса / Всероссийский экономический журнал «Экономика и организация». - 2008. - №7. - 78 с.

4. Коржубаев А. Г., Соколова И. А., Эдер Л. В.. Анализ тенденций в нефтяном комплексе России / Всероссийский экономический журнал «Экономика и организация», 2010., - № 10 - 103 с.

5. Мартынов В. Н. В нефтегазовом образовании - кризис перепроизводства / Журнал «Нефть России», 2009., - № 8 - 23 с.

Понравилось? Нажмите на кнопочку ниже. Вам не сложно , а нам приятно ).

Чтобы скачать бесплатно Рефераты на максимальной скорости, зарегистрируйтесь или авторизуйтесь на сайте.

Важно! Все представленные Рефераты для бесплатного скачивания предназначены для составления плана или основы собственных научных трудов.

Друзья! У вас есть уникальная возможность помочь таким же студентам как и вы! Если наш сайт помог вам найти нужную работу, то вы, безусловно, понимаете как добавленная вами работа может облегчить труд другим.

Если Реферат, по Вашему мнению, плохого качества, или эту работу Вы уже встречали, сообщите об этом нам.