Снижение затухания горизонтальных кабелей: насколько возможно и когда уместно. Меры по уменьшению переходного затухания

Боб Кенни
директор по информационным кабельным технологиям в Prestolite Wire Cop.

О кабеле с неэкранированными витыми парами известно, кажется, все и всем. Однако еще одно подробное знакомство с ним будет нелишним, особенно в связи с появлением новых его разновидностей.

Проводка с неэкранированными витыми парами оказала огромное влияние на сетевую инфраструктуру. Благодаря ей пользователи получили возможность использовать один тип кабельной системы для любых локально-сетевых приложений. Однако в последнее время решения на базе UTP стали куда как разнообразнее. На данный момент производители предлагают многочисленные разновидности проводки UTP от базовой Категории 3 до нестандартной пока Категории 6. В результате конечным пользователям становится все труднее и труднее разобраться в том, чем же отличаются различные типы проводки.

На эту тему написано множество статей. В одних - бум новых классов проводки UTP считается не более чем маркетинговым трюком производителей, в других - предлагаемые усовершенствования классифицируются как запоздалая модернизация устаревшей технологии. Так кто же прав?

ОПРЕДЕЛЕНИЕ ПРОВОДКИ UTP

За последнее десятилетие проводка UTP претерпела значительные изменения. Рост потребностей сетей привел к появлению потенциального спроса на проводку UTP более высокого качества. Но прежде чем переходить к обсуждению достоинств проводки UTP, мы должны вначале разобраться в определяющих ее терминах.

Назначение любого сетевого кабеля состоит в передаче данных от одного устройства к другому. Такими устройствами могут быть терминалы, принтеры, серверы и т. д. Они могут подключаться к различным типам кабельных сред, включая оптический, коаксиальный, биаксиальный кабель, а также кабель с различными сочетаниями экранированных и неэкранированных пар. Выбор наилучшим образом подходящего для данного приложения типа проводки зависит от множества факторов, в том числе от удаленности конечных устройств, срока службы, уровня шума, требований защиты, финансовых ограничений, возможности последующего расширения и скорости передачи. Многие конечные пользователи рассматривают кабели с неэкранированными витыми парами как стандартную среду передачи, использование которой решает многие из перечисленных проблем.

Наибольшей популярностью UTP пользуется в качестве горизонтальной проводки, а именно для подключения настольных систем к телекоммуникационным шкафам (Telecommunication Closet, TC). Как следует из названия, UTP состоит из нескольких неэкранированных витых пар, окруженных общей оболочкой. Несмотря на наличие двух- и 25-парных кабелей, наибольшей популярностью пользуется четырехпарная проводка. Хотя в большинстве локально-сетевых сред, таких, как 10/100BaseTX, используется только две из четырех пар, новые рассматриваемые протоколы, в частности Gigabit Ethernet, будут задействовать все четыре пары.

ПОГОННОЕ ЗАТУХАНИЕ

Рисунок 1. Погонное затухание.
Одной из наиболее серьезных проблем для любой кабельной инфраструктуры является затухание сигнала. К сожалению, при передаче информации от устройства к устройству качество сигнала ухудшается. Так, при прохождении расстояния в 100 м по кабелю UTP сигнал 100BaseT обычно теряет значительную часть своей первоначальной мощности (см. Рисунок 1). Если эти потери окажутся чересчур велики, то принимающее устройство не сможет распознать передаваемые данные. Чтобы этого не случилось, комитеты по стандартизации налагают ограничения на допустимый размер потерь.

Потери характеризуются термином "погонное затухание" или просто "затухание". В случае UTP затухание определяет величину потерь при прохождении сигнала по проводящей среде и выражается в децибелах (дБ). Использование децибел в качестве единицы измерения имеет свои преимущества. Например, нетрудно запомнить, что при затухании сигнала на 3 дБ он теряет 50% своей мощности. В Таблице 1 показано, как децибелы соотносятся с потерянной мощностью сигнала.

Величина потерь зависит от конструкции кабеля, в том числе от размера проводника, состава, изоляции и/или материала оболочки, диапазона рабочих частот, скорости передачи и протяженности кабеля. Влияние первого фактора, размера проводника, наиболее очевидно. Обычно чем больше проводник, тем меньше потери. По этой причине во многих кабелях UTP старшего класса используются проводники 23 AWG вместо 24 AWG.

Материал проводника (состав) также имеет важное значение. Например, медь имеет меньшие потери, чем сталь. Некоторые материалы, в частности серебро, имеют еще лучшие характеристики, нежели медь, однако многие из них слишком дороги для массового применения. Материал изоляции также может иметь влияние на затухание сигнала. В высококачественных кабелях UTP для изоляции проводника обычно используются материалы с низкими потерями, такие, как фторированный этиленпропилен или полиэтилен. Эти материалы обычно имеют меньшие потери, чем другие соединения, такие, как PVC. Материал оболочки также отражается на величине затухания. Именно поэтому многие производители отделяют оболочку от изолированных пар с помощью конструкции нежесткой трубы. Кроме того, как известно, затухание в медной проводке UTP увеличивается с ростом частоты. Например, при 100 МГц затухание больше, чем при 1 МГц (при условии, что кабели имеют одинаковую длину). И, наконец, потеря сигнала зависит от протяженности кабеля. При прочих равных условиях - чем длиннее кабель, тем больше потери. По этой причине затухание выражается в децибелах на единицу длины.

Резюме по затуханию:

  • при прохождении по кабелю сигнал теряет свою силу;
  • затухание определяет величину потерь;
  • величина затухания выражается в децибелах (дБ);
  • затухание в кабеле зависит от таких факторов, как размер и состав проводника, рабочая частота (диапазон частот), скорость и расстояние.

ПЕРЕХОДНОЕ ЗАТУХАНИЕ


Рисунок 2. Переходное затухание.
Витая пара называется активной, если по ней передается сигнал. Активная пара, естественно, создает электромагнитное поле. Это поле может оказывать влияние на другие находящиеся поблизости активные пары (см. Рисунок 2).

Один из наиболее сложных для понимания моментов в отношении переходного затухания связан с единицами измерения, а именно с децибелами. В случае погонного затухания чем больше величина в децибелах, тем выше потери сигнала. В случае переходного затухания все наоборот - чем больше величина в децибелах, тем меньше помехи. Таблица 2 позволит лучше разобраться в ситуации.

Очевидно, появление шумов в соседних парах нежелательно. Как видно из диаграммы, чем больше величина переходного затухания в децибелах, тем меньше наведенное напряжение (т. е. шумы) в соседних парах.

Погонное затухание характеризует потерю сигнала. Следовательно, чем больше величина в децибелах, тем выше потеря сигнала. Однако переходное затухание характеризует потерю шума. В этом случае чем больше величина в децибелах, тем больше потери шума. И конечно, чем активнее затухает шум, тем лучше.

ВИДЫ ПЕРЕХОДНОГО ЗАТУХАНИЯ

Переходное затухание на ближнем конце. Такие системы, как 10BaseT Ethernet, используют две пары для обмена данными: одну - для передачи, вторую - для приема (см. Рисунок 3). Сигнал имеет наибольшую мощность сразу же после момента передачи данных. И обратно, сигнал обладает наименьшей мощностью непосредственно перед моментом приема данных.

Наиболее часто термин "переходное затухание" используется вместе со словосочетанием "на ближнем конце". Причина этого в том, что на ближнем конце, где сигнал имеет наибольшую мощность, он порождает мощное электромагнитное излучение (электромагнитные помехи). Рядом же с передатчиком по соседней паре идет ослабленный сигнал на приемник. Такая комбинация может иметь самые серьезные последствия для принимаемого сигнала, так как он оказывается под воздействием сильного соседнего поля. Это явление имеет место на ближнем конце, поэтому оно и выделяется.

Суммарное переходное затухание. Как отмечалось ранее, некоторые системы задействуют все четыре пары. При рассмотрении переходного затухания на ближнем конце мы исходили из того, что используются только две пары. Однако, если активны все четыре пары, как в стандарте на Gigabit Ethernet, они порождают значительно большие шумы.

Рисунок 4. Суммарное переходное затухание.
Здесь-то нам и понадобится такая характеристика, как суммарное переходное затухание. Оно учитывает влияние всех активных пар (см. Рисунок 4). Для примера мы взяли кабель с четырьмя парами. В случае 25-парной магистральной проводки эта величина имеет еще более важное значение, так как потенциально активными могут быть в шесть раз больше пар.

Переходное затухание на дальнем конце. Обычно данные передаются в одном направлении, а именно от передающего устройства к принимающему. Однако в некоторых системах данные передаются в двух направлениях. Такие системы называются полнодуплексными. В этом случае данные вводятся в кабель как на ближнем конце, так и на дальнем одновременно. Поэтому в случае полнодуплексной передачи шумы возникают как на ближнем, так и на дальнем конце. Ввиду этого переходное затухание на дальнем конце введено во многие новые спецификации.

Шум на дальнем конце измерить не так-то просто, потому что значительная доля шумов теряется или затухает по пути к тестовому устройству. Поэтому стандартной практикой является вычитание погонного затухания и учет только одних шумов. Величина "шумы минус затухание" получила название приведенного переходного затухания на дальнем конце.

Рисунок 5. Стороннее переходное затухание.
Стороннее переходное затухание. Этот термин используется для описания перекрестных помех между кабелями. Данный эффект наиболее заметен, когда активны несколько пар в кабеле. В этом случае излучаемая отдельным кабелем энергия может быть достаточно существенна. В примере на Рисунке 5 шесть кабелей с четырьмя активными парами каждый окружают еще один четырехпарный кабель. Общее число активных пар равно 24. Все вместе они могут создать серьезные помехи для сигнала в центральном кабеле. В этом случае знание о стороннем затухании будет иметь важное значение для эффективного функционирования сети.

Резюме по переходному затуханию:

  • переходное затухание на ближнем конце имеет такое важное значение потому, что на ближнем конце передаваемый сигнал имеет наибольшую мощность, а принимаемый сигнал - наименьшую. В результате принимающая пара оказывается особенно восприимчива к помехам со стороны передающей пары. Суммарное переходное затухание учитывает влияние нескольких активных пар;
  • переходное затухание на дальнем конце характеризует последствия полнодуплексных операций, когда сигналы генерируются одновременно на ближнем и дальнем концах. Стороннее переходное затухание определяет воздействие перекрестных помех со стороны других кабелей. Этот эффект проявляется наиболее сильно, когда активны несколько пар в кабеле.

ИМПЕДАНС И ОБРАТНЫЕ ПОТЕРИ

Рисунок 6. Импеданс как функция частоты.
Импеданс характеризует путь прохождения данных. Например, если сигнал передается с импедансом 100 Ом, то и структурированная проводка должна соответствовать импедансу 100 Ом. Любое отклонение от этой величины приведет к тому, что часть сигнала отразится назад к источнику данных. Изменение импеданса может быть вызвано множеством причин. Одна из них - несоблюдение технологии в процессе изготовления: любое отклонение от предусмотренного расстояния между проводниками или нарушение свойств изолирующего материала способно привести к изменению импеданса (см. Рисунок 6).

Рисунок 7. Импеданс.
Другая распространенная причина - несоответствие компонентов. Например, несоответствие имеет место, когда шнур переключений с одним импедансом присоединяется к горизонтальной проводке с другим импедансом (см. Рисунок 7а).

Такое несовпадение неизбежно вызовет отражение энергии в точке разрыва (см. Рисунок 7б). Если импеданс обусловливает возможность несоответствия, то обратные потери характеризуют его последствия. Обратные потери (измеряемые в дБ) позволяют выяснить, какая доля сигнала теряется вследствие отражения.

Резюме по импедансу и обратным потерям:

  • импеданс характеризует путь прохождения данных. Любое отклонение в величине импеданса приводит к отражению сигнала;
  • отражение означает, что вместо того, чтобы продолжать свой путь дальше вперед, в действительности энергия отражается назад к передатчику;
  • в конечном итоге это приводит к ослаблению распространяющегося в прямом направлении сигнала.

ПЕРЕКОС ЗАДЕРЖКИ

Рисунок 8. Перекос задержки.
Другой привлекающий к себе значительное внимание параметр - перекос задержки. Перекос задержки характеризует синхронизацию путей передачи сигнала по разным парам в кабеле (см. Рисунок 8).

Когда все четыре пары активны, сигналы должны прибывать согласованно. Измеряемый в наносекундах перекос задержки характеризует разницу во времени поступления сигналов по разным парам кабеля. Если эта разница окажется чересчур велика, то принимающее устройство будет не в состоянии восстановить сигнал. В конечном итоге это приведет к ошибкам и потере данных.

ЗАЧЕМ УСОВЕРШЕНСТВОВАТЬ ПРОВОДКУ?

Первые усовершенствованные версии проводки Категории 5 появились около пяти лет назад. Многие из обсуждавшихся выше параметров удалось улучшить за счет применения уникальных конструкций кабеля, в частности более тугой скрутки и внутрикабельных заполнителей. Цель этих усовершенствований состояла в подготовке пользователей к грядущим изменениям в технологиях локальных сетей.

Когда Категория 5 только появилась, лишь немногим системам был действительно необходим предоставляемый ею диапазон рабочих частот. Так, Ethernet на 10 Мбит/с и Token Ring на 4 Мбит/с разрабатывались в расчете на проводку Категории 3. Однако с появлением новых систем, таких, как 100BaseT и ATM на 155 Мбит/с, потребность в Категории 5 стала очевидной. В последнее время уже новые протоколы, в частности ATM на 622 Мбит/с и 1000BaseT, заставляют многих задуматься о достаточности Категории 5 для их реализации. Отсюда и тенденция к усовершенствованию UTP.

Что же такого особенного в этих сетях, что их появление привело к подобной тенденции?

Возросшие скорости передачи данных. Широкое распространение в современных сетях получили такие системы, как 100BaseT и ATM на 155 Мбит/с. Ввиду их сложности по сравнению с 10BaseT и его аналогами проводка для этих систем должна обеспечивать меньшее затухание сигнала, обладать лучшей устойчивостью к помехам и вообще быть более целостной.

Сложные схемы кодирования. В целях оптимального распределения энергии по диапазону частот системами типа 100BaseT используются многоуровневые схемы кодирования. Они имеют множество достоинств, в частности низкий уровень шумов. К сожалению, чем сложнее схема кодирования, тем чувствительнее система. Поэтому кабель не должен иметь разрывов импеданса, обладая при этом хорошей изоляцией.

Функционирование в полнодуплексном режиме. В системах наподобие 10BaseT в каждый конкретный момент времени активна только одна пара. По одной паре данные передаются, по другой - принимаются. Такой режим работы называется полудуплексным. Благодаря достижениям в технологическом процессе и электротехнике, новые системы могут работать в полнодуплексном режиме, т. е. сигналы могут передаваться и приниматься одновременно. Это позволяет увеличить пропускную способность кабеля UTP фактически вдвое. Однако для этого кабель должен иметь стабильные характеристики импеданса с минимальным отражением и хорошую изоляцию от перекрестных помех между парами на ближнем/дальнем конце.

Использование нескольких пар. В обычных сетях активны только две из четырех пар. Между тем пропускную способность можно значительно увеличить за счет использования всех четырех пар кабеля Категории 5. С помощью хитроумной электроники данные могут передаваться одновременно по нескольким парам и восстанавливаться в точке приема. Чтобы это стало возможным, кабель должен обеспечивать при прохождении сигнала как можно меньшие помехи между парами, когда активны все четыре пары. Это послужило толчком к сертификации кабелей Категории 5 на соответствие параметрам суммарного затухания.

КРАТКОЕ ОБОБЩЕНИЕ

Весь спор о необходимости усовершенствованной проводки можно свести к двум очень простым вопросам.

  1. Чем будет полезна усовершенствованная проводка UTP для моей существующей сети?
  2. Чем будет полезна усовершенствованная проводка UTP при модернизации моей сети?

Если кто-то пытается продать вам решение на базе усовершенствованной проводки, то попросите его ответить на эти два простые вопроса. Если он окажется не в состоянии это сделать, то его заявления - не больше, чем маркетинговый ход. В конце концов, сами по себе усовершенствования не имеют смысла. Ваш выбор должен напрямую зависеть от того, какую реальную пользу принесет модернизация вашей сети. И ключевым словом здесь является "ваша". Далеко не все усовершенствования нужны именно в вашей сети. Важно также, чтобы обещанные преимущества стали реализованными преимуществами.


Рисунок 9. Показания тестового устройства NEWSLine компании LeCroy.
Поэтому просто установка усовершенствованной проводки UTP не дает гарантии повышения производительности системы. Пользователю необходимо продемонстрировать, что эти усовершенствования расширят возможности сети и/или улучшат ее характеристики. На Рисунке 9 показаны результаты измерений сигнала с помощью тестового устройства для сети 100BaseT компании LeCroy под названием NEWSLine. Используемый кабель соответствовал Категории 5. Нижний график соответствует исходному сигналу, а верхний показывает, каким сигнал становится после прохождения 100 м.

Тем не менее остается вопрос, каковы общие следствия для сети? В том, что UTP способен обеспечить соединение, сомнений не возникает. Однако гораздо более важное значение имеет способность UTP передавать данные согласованным образом и без ошибок.

Таблица 3 показывает влияние ошибок на пропускную способность сети 100BaseT Ethernet. Как было установлено, увеличение числа ошибок при передаче данных до одного процента приводит к снижению пропускной способности на 80%. Поэтому если усовершенствование проводки UTP способно предотвратить появление ошибок, то переход к проводке более высокого класса вполне оправдан. Улучшение таких параметров, как суммарное переходное затухание, стороннее переходное затухание и мощность сигнала, позволяет сократить вероятность ошибок в существующих и будущих сетях. Однако эти характеристики должны быть продемонстрированы и объяснены конечным пользователям.

Значение надежно функционирующей проводки UTP возрастает с увеличением скорости передачи данных. Такие системы, как 1000BaseT, потенциально в четыре раза более чувствительны, чем 100BaseT. Предотвращение ошибок является в обоих случаях обязательным для успешного функционирования сети. Используя такие устройства, как вышеупомянутый тестер компании LeCroy, конечные пользователи могут увидеть, как UTP влияет на характеристики сети. И в некоторых случаях переход на усовершенствованную проводку позволяет увеличить пропускную способность за счет предотвращения ошибок в передаче данных.

ЗАКЛЮЧЕНИЕ

Несмотря на наличие у усовершенствованной проводки UTP потенциала для расширения возможностей как существующих, так и будущих сетей, вопросы по-прежнему остаются: "Насколько нужны эти усовершенствования для вашей системы и чем они могут помочь для вывода ее на новый уровень?" Только ответив на эти два вопроса, вы сможете отличить реальные потребности от мнимых.

Максимальное затухание между двумя телефонными аппаратами на городской телефонной сети должно быть не более 28 дБр (децибел-разность). В данном случае все величины затухания показаны от уровня предыдущей точки. При этом затухание абонентских линий (АЛ) не должно превышать 4,5 дБ для кабеля с диаметром жил 0,32 и 3,5 дБ для жил с большим диаметром.

Затухание станционного четырехполюсника не должно превышать 1 дБ на РАТС (районных АТС) и 0,5 на узловых станциях (исходящего УИС или входящего сообщения - УВС).

При четырехпроводной коммутации затухание станционного четырехполюсника узловых станций принимается равным нулю. При переходе от двухпроводного соединения к четырехпроводному тракту затухание равно 1дБ. При использовании электронных АТС затухание на участках с системой передачи ИКМ должна быть 7 дБ. Распределение затухания в дБ на ГТС приведено на рис. 2.6 .


Рис. 2.6.

Переходное затухание

Переходное затухание - величина, которая характеризует относительное количество энергии, переходящей вследствие электромагнитной связи из одной цепи в другую; выражается в децибелах. Так же как обычное затухание, оно измеряется отношением мощности на выходе к мощности на входе. Но в данном случае входным является мощность полезного сигнала одной цепи, выходным - мощность этого же сигнала в соседней цепи. Этот эффект обязательно имеет место между соседними цепями (жилами кабеля, проводами воздушной линии). Он может порождаться переходами сигналов из приемника в передатчик, а также при преобразовании четырехпроводной линии в двухпроводную и обратным преобразованием.

Различаются переходное затухание:

  • измеряемое на ближнем конце (NEXT - Near End Cornstalk) . Имеется в виду переход мощности от одной пары к другой, который измеряется на конце, ближнем к передатчику пары, подверженной влиянию;
  • измеряемое на дальнем конце (FEXT - Far End Cornstalk) . Имеется в виду переход мощности от одной пары к другой, который измеряется на конце, дальнем от передатчика пары, подверженной влиянию. Измерение проводятся во всем диапазоне рабочих частот, т.е. для речевого сигнала - в диапазоне частот 300-3400 Гц.

Меры по уменьшению переходного затухания.

Кабель с витыми парами

Для уменьшения влияния переходного затухания применяются кабели с витыми (скрученными) парами . Это многожильные кабели, у которых жилы скручены по парам или четверкам. Принцип борьбы с помехами переходного затухания заключается в том, что при скрутке провода, влияющие на отдельные участки кабеля, наводят электромагнитную энергию, равную по амплитуде и противоположную по направлению, как это показано на рис.2.7 . При идеально сбалансированной скрутке (равный шаг скрутки, идеальная симметрия проводов) переходное затухание равно нулю.


Рис. 2.7. Метод устранения помех с помощью "скрещивания" проводов например, применение в одном помещении электромеханических и электронных систем. В современных системах, применяющих абонентские устройства передачи данных, большое значение имеет показатель коэффициент импульсных помех

Коэффициент импульсных помех служит для цифровой оценки состояния линии, он указывает количество ошибок на определенное число переданных битов. Нормальным считается коэффициент ошибок - это означает, что на битов в канале появляется одна помеха, которая может привести к ошибке. Минимально приемлемая величина коэффициента ошибок (допускается обычно при применении радиотракта) составляет . Величина считается хорошей. Следует учитывать, что эти показатели условны. Они измеряются за определенный интервал времени, например, за час. Но в реальности в течение каждого интервала они распределяются неравномерно и могут приходить концентрированно (пачкой). Поэтому иногда вводят коэффициент "пачечности" (концентрации ошибок), который показывает отношение количества ошибок, полученных в данном интервале времени, к ожидаемому среднему по всем интервалам. Для преодоления ошибок применяются различные алгоритмы, которые будут рассмотрены далее. Помехи ухудшают качество приема речи, а при передаче данных могут привести к неверному их принятию или задержкам, замедляющим реальную скорость обмена данными (скорость модема). Наибольшие проблемы возникают при ухудшении этого коэффициента и при контроле качества канала со стороны передающих или принимающих устройств. Если эти устройства настроены на отключение канала при превышении ошибки, то при случайных возмущениях в сети часто происходит полное отключение станции. Поэтому при автоматическом контроле этого параметра необходимо оставлять возможность регулировки порога.

Необходимость непрерывного повышения объема и скорости передачи информации заставляет совершенствовать качественные показатели кабельных трактов. Однако возможности снижения затухания горизонтальных кабелей уже практически исчерпаны и сохраняются только для ЦОДов с их небольшой протяженностью линий.

Естественное стремление обеспечить нормальное быстродействие информационно-телекоммуникационной системы (ИТС) стимулирует внедрение каналов связи с постоянно увеличивающейся пропускной способностью.

Тенденция к переходу на все более быстродействующую технику высоких категорий четко прослеживается на всех уровнях информационной кабельной системы. Не стала исключением ее горизонтальная подсистема, которая в подавляющем большинстве случаев реализуется на электропроводной симметричной элементной базе. Стандартные симметричные кабельные тракты СКС отличаются высокой шенноновской пропускной способностью в сочетании с относительно небольшой шириной полосы пропускания. Необходимость максимально полно использовать потенциальные возможности этой направляющей системы вынуждает разработчика сетевых интерфейсов задействовать сложные многопозиционные линейные сигналы, требовательные к качественным показателям канала связи. Малейшее невыполнение норм по этим параметрам приводит к резкому снижению пропускной способности и, соответственно, падению потребительской ценности ИТС в целом, что недопустимо.

Особенности обеспечения качества сигнала в симметричных кабельных СКС

Техника локально-вычислительных сетей (ЛВС) предполагает, что при переходе на аппаратуру следующей по быстродействию ступени темп передачи в подавляющем большинстве случаев увеличивается на порядок. Это является необходимым условием обеспечения значимой экономической выгоды от внедрения более совершенной техники.

Одним из ключевых факторов, определяющих качество передачи информации в любой системе электросвязи, становится отношение сигнала к шуму на входе ее приемника при достаточной ширине полосы пропускания. Превалирующим типом помехи в электропроводных симметричных трактах СКС являются переходные шумы. Мешающие воздействия прочих разновидностей, также в определенных пределах влияющие на качество передачи с точностью, достаточной для выполнения инженерных расчетов, считаются второстепенными. Этому в немалой степени способствует высокая эффективность их подавления самим сетевым интерфейсом при соответствующей обработке смеси сигнала с шумом на приеме и коррекции на передающем конце.

В качестве численной меры величины отношения сигнала к шуму в СКС привлекается параметр ACR - показатель защищенности от переходной помехи. Для учета особенностей схемы передачи и обработки линейного сигнала, используемых в современных высокоскоростных интерфейсах, его дополнительно указывают для обычного, суммарного и межэлементного влияния, а также для ближнего и дальнего концов тракта.

Несложно показать, что защищенность не зависит от уровня выходного сигнала передатчика и численно равна разности между величинами соответствующего переходного и рабочего затухания, т.е. определяется исключительно самим кабельным трактом. Например, используемая еще в первых редакциях стандартов междупарная защищенность на ближнем конце находится как

ACR = NEXT - IL, дБ,

где NEXT - переходное затухание на ближнем конце, IL - рабочее затухание.

Другие разновидности защищенности получаются простой заменой NEXT на величину соответствующего переходного затухания.

Предельная пропускная способность симметричного тракта определяется известным соотношением Шеннона и для современной мультигигабитной техники используется с высокой степенью полноты (примерно на 60% в 10-гигабитных системах). Поэтому при переходе на следующее по быстродействию поколение сетевой аппаратуры величина ACR должна быть увеличена примерно на 10 дБ во всей рабочей полосе частот. Это необходимо для обеспечения вероятности битовой ошибки не свыше 10-12, фиксируемой спецификациями IEEE.

Из приведенного соотношения следует, что наращивать ACR можно двумя на первый взгляд равнозначными способами: уменьшением IL и наращиванием NEXT.

Методы уменьшения рабочего затухания

Для уменьшения величины рабочего затухания разработчик кабеля может использовать несколько основных приемов:

  • увеличить диаметр провода витой пары;
  • использовать для изготовления проводников материалы с меньшим удельным сопротивлением;
  • применить более качественную изоляцию с уменьшенными диэлектрическими потерями;
  • улучшить степень согласования волновых сопротивлений тех отдельных компонентов, последовательное сопротивление которых образует кабельный тракт СКС;
  • увеличить номинальное значение волнового сопротивления свыше 100 Ом.

Увеличение диаметра токопроводящей проволоки витой пары свыше 0,64 мм нецелесообразно из-за опасности возникновения несовместимости с IDC-контактами кабельной части разъемов существующего коммутационного оборудования.

Электротехническая медь, применяемая для изготовления проводов витых пар, практически идеальный материал, уступающий по своим характеристикам только серебру, переход на которое невозможен по экономическим причинам. Кроме того, задействованный в сетевых интерфейсах Ethernet способ передачи в базовой полосе делает технически крайне неэффективным обращение к заметно более экономичным биметаллическим проводам, когда тонкий слой серебра наносится только на поверхность медного провода.

Также в значительной степени исчерпаны резервы улучшения качества изоляции. Современные полимерные материалы, используемые для формирования изолирующих покрытий медных проводников, отличаются предельно малыми потерями. Кроме того, относительная диэлектрическая проницаемость доведена до величины около 1,5. Это достигается в том числе за счет применения пустотелых материалов, получаемых за счет вспенивания или структурирования (рис. 1). Ее дальнейшее существенное снижение проблематично из-за сложностей, связанных с обеспечением механической стабильности самого изоляционного покрытия.

Улучшение степени согласования отдельных компонентов позволяет приблизить рабочее затухание к характеристическому (теоретическому минимуму). Действующие редакции стандартов фиксируют, что для современных компонентов допустимое значение отклонения волнового сопротивления от номинального не превышает ±15% во всем рабочем частотном диапазоне. Следовательно, степень приближения к оптимуму достаточно высока и значимого прогресса в этой области ожидать не приходится.

Увеличение волнового сопротивления как прием, не требующий перехода на иные исходные материалы, позволяет добиться серьезных результатов. Например, применение 120-омных кабелей, которые допускались для использования в СКС стандартами еще в 1995 г., для широко распространенной категории 5е на частоте 100 МГц при 100-метровой протяженности линии дает выигрыш около 5 дБ. Однако при этом из-за потери свойства обратной совместимости резко усложняется эксплуатация кабельной системы. Причина в том, что существенное увеличение уровня отражений в точке с разным волновым сопротивлением не позволяет гарантировать работоспособность гигабитной сетевой аппаратуры и ее более скоростных модификаций при прямом подключении к стационарной линии. Обращение к согласующим элементам в независимости от варианта их исполнения сопряжено с рядом очевидных неудобств эксплуатационного плана и считается крайне нежелательным.

Из изложенного прямо вытекает, что возможности известных методов снижения затухания достаточно ограничены и прорыва в этой области ожидать не приходится. Не случайно спецификации кабельных трактов перспективной категории 8, разрабатываемые в настоящее время, исходят из линейно-логарифмической интерполяции характеристик коэффициентов затухания элементной базы категорий 6а и 7а в ВЧ-части спектра линейного сигнала 40-гигабитных сетевых интерфейсов (рис. 2).

Увеличение переходного затухания

В широкой инженерной практике много способов улучшить характеристики отдельных компонентов и комплексных объектов электропроводной подсистемы СКС по переходным влияниям. Для улучшения внутрикабельного переходного затухания привлекаются следующие:

  • уменьшение шага скрутки витых пар вплоть до величин менее 10 мм;
  • введение в конструкцию сердечника сепаратора витых пар;
  • применение индивидуального для каждой пары экранирования.

Межкабельное переходное затухание для изделий категории 6а и выше наращивается до требуемого значения следующими мерами:

  • искусственное увеличение эффективного внешнего диаметра неэкранированных конструкций с целью снижения межкабельных влияний;
  • использование оплеточных и пленочных экранов (в последнем случае возможно их незаземленное исполнение).

Из приведенного перечня следует, что те изменения, которые положены в основу коррекции конструкции кабеля, носят исключительно механический характер. За счет этого они не требуют радикальной перестройки кабельного производства и внедрения новых материалов.

Как увеличить ACR?

Разумеется, не существует никаких противопоказаний к улучшению качественных показателей электропроводных линий СКС за счет одновременного снижения рабочего затухания и наращивания переходного затухания. В первую очередь это относится к симметричному кабелю как наиболее «шумящему» компоненту тракта.

Из представленных выше данных следует, что достижение требуемой величины ACR за счет наращивания NEXT заметно эффективнее. Проиллюстрируем это положение на численном примере. При переходе с техники категории 5е на категорию 6 шаг скрутки уменьшается на несколько десятков процентов. В конструкцию кабельного сердечника в подавляющем большинстве случаев дополнительно вводится сепаратор. Комплекс этих достаточно простых по современным меркам мероприятий дает возможность добиться увеличения NEXT на отмеченные выше 10 дБ. Кроме того, наращивание NEXT оказывается одинаковым во всем рабочем частотном диапазоне. Вносимые потери IL уменьшаются за счет увеличения диаметра токопроводящей жилы пары с 0,51 до 0,53 мм. Абсолютная величина снижения согласно требованиям стандартов составляет примерно 2 дБ на частоте 100 МГц, т.е. выигрыш по этому параметру от перехода на более качественную элементную базу оказывается достаточно малым. Более того, по мере уменьшения частоты величина выигрыша падает, что еще более снижает эффективность наращивания пропускной способности кабельного тракта этим путем.

За основу дальнейшего анализа можно принять то, что при современном уровне техники практическая необходимость в наращивании гарантированного минимального значения величины ACR в настоящее время существует только в ЦОДе. Наглядным проявлением этой тенденции стали те существенные ужесточения требований к основным параметрам электропроводных трактов, которые зафиксированы в проекте спецификаций техники перспективной категории 8. Фокусной областью применения данного оборудования рассматриваются именно аппаратные залы ЦОДа.

СКС для ЦОДа имеет ряд особенностей, совокупность которых привела к выделению данной разновидности информационных кабельных систем в самостоятельный класс со своей нормативной базой. Наряду с заметно более высокими частотами передаваемых сигналов подобные кабельные системы отличаются заметно меньшими средними длинами организуемых трактов.

В этих условиях технико-экономическая эффективность СКС может быть заметно увеличена за счет отказа от гарантированного обеспечения классической 100-метровой протяженности тракта. Обращение к такому подходу целесообразно еще и потому, что положительно сказывается на энергетической эффективности объекта в целом.

С технической точки зрения уменьшение максимально допустимой протяженности тракта до 30 м выгодно тем, что сопровождается резким падением величины IL. Например, для кабеля типа UC1500 компании Draka на верхней граничной частоте 1500 МГц выигрыш достигает 45 дБ. В данном случае (даже с учетом уменьшения выигрыша по мере снижения частоты) вклад IL в наращивание ACR и через него - шенноновской пропускной способности становится сопоставимым с тем, который достигается улучшением NEXT.

Кроме того, уменьшение общих потерь ценно еще и тем, что приводит к естественному расширению полосы пропускания (верхняя граничная частота тракта определяется по критерию ACR) и заметно упрощает схемотехнические решения при конструировании приемопередатчика сетевого интерфейса. Наиболее значима возможность сохранить в неизменности разрядность линейного сигнала и применять менее сложный приемник. 

Для увеличения пропускной способности симметричного тракта до 10 Гбит/с и выше недостаточно использования внутренних резервов существующей элементной базы и требуется обязательное улучшение ее основных параметров.

Совершенствование качественных показателей симметричного электропроводного тракта достигается преимущественно за счет улучшения характеристик горизонтального кабеля по параметрам влияния.

Резервы по минимизации коэффициента затухания горизонтальных кабелей в рамках ограничений, зафиксированных в существующих нормативных документах, и достигнутого уровня техники исчерпаны практически полностью.

Снижение общего затухания симметричного тракта актуально исключительно для ЦОДа и обеспечивается уменьшением его предельно допустимой протяженности до предела, определяемого энергетической эффективностью аппаратного зала в целом.

Наиболее употребительным параметром, характеризующим взаимные влияния между цепя­ми, является переходное зату­хание. С его помощью удобно оценивать эффективность раз­личных мероприятий, направ­ленных на уменьшение влия­ний, и сравнивать направляю­щие системы с точки зрения помехозащищенности. Однако этот параметр не позволяет однозначно судить о качестве передачи сигнала по цепи связи, по­скольку последнее определяется отношением сигнала к помехе в точке приема, т. е. защищенностью от помех в точке приема. Защищенность зависит от величины помех соседних цепей связи (переходного затухания) и величины ослабления полезного сиг­нала в цепи связи.

Переходное затухание между цепями по аналогии с собственным затуханием цепей принято оценивать величиной, определяемой ло­гарифмом отношения полной мощности сигнала в начале влияющей цепи Р 10 к полной мощности помехи (Р 20 или Р 2 l ) в цепи, подвержен­ной влиянию (рис. 3.12)

на ближнем конце:

, (3.15)

на дальнем конце:

. (3.16)

Переходное затухание может быть выражено не только через мощности, но и через токи (напряжения). Так как то

Значения токов определяют по формулам (3.10) - (3.14). Если отношение токов I 10 /I 20 обозначить через B 0 , а I 10 /I 2 l - через В l , то формулы переходного затухания примут вид:

(3.19)

(3.20)

(3.21)

(3.22)

Защищенность А з - это логарифмическая мера отношения полной мощности сигнала Р с к полной мощности помех Р п в той же точке цепи:

А з =10lg(Р с / Р п). (3.23)

Значение защищенности однозначно связано со значением переход­ного затухания. В случае одинаковых уровней передачи по влияю­щей и подверженной влиянию цепям эта связь определяется выраже­нием

А з =А-al, (3.24)

где А - переходное затухание на ближнем или дальнем конце цепи;

al - затухание цепи.

Значение защищенности нормируется для конкретных цепей. Поскольку допустимое значение шумов в каналах связи эталонной линии длиной 2500 км не должно превышает 1,1 мВ, то величина защищенности в случае кабельной линии должна быть не менее 54,7 дБ, а воздушной 50,4 дБ.



При строительстве линии связи для контроля за качеством работ требуется знать нормы, отнесенные к одному усилительному участ­ку или длине магистрали, отличной от эталонной длины или другой длины, для которой известно нормируемое значение защищенности.

Когда на линии имеются несколько усилительных участков, то токи помех, наводимые в пределах отдельных усилительных участ­ков, усиливаются промежуточными усилителями, и защищенность на один усилительный участок надо увеличивать. Фазы токов влияния с отдельных участков неизвестны, поэтому применяют квадра­тичный закон сложения. При одинаковых цепях и одинаковых то­ках влияния на каждом усилительном участке полный ток влияния с N усилительных участков будет равен произведению на .

Защищенность по длине всей цепи

Следовательно, защищенность на одном усилительном участке

(3.26)

Значение защищенности, известное для одной длины линии, мо­жет быть пересчитано на другую по формуле

(3.27)

где А з - нормированная защищенность;

l x ; l - длины участков, на которых соответственно определяется и нормируется защищенность.

Нормы переходного затухания устанавливают на основании норм защищенности и принятой схемы организации связи

Косвенные влияния. При выводе формул, для определения токов влияния и переход­ного затухания предполагалось, что на линии имеются только две одинаковые цепи с параллельными проводами (жилами), согласо­ванными нагрузками и электромагнитными связями, постоян­ными по всей длине цепей. В действительности всегда имеют место влияния через третьи цепи из-за несогласованности нагрузок и ли­нии, а также конструктивных неоднородностей. Эти влияния принято на­зывать косвенными (дополнительными). Токи этих влияний, склады­ваясь с токами непосредственного влияния, снижают переходное затухание между цепями и защищенность цепей от взаимных влияний. Исследованиями установлено, что косвенные влияния особен­но сказываются на дальнем конце цепей в области высоких частот и при определенных условиях могут превышать непосредственное влияние между цепями.

Влияния вследствие отражений . Такие влияния возникают в результате неполного согласования входного сопротивления аппаратуры с волновым сопротивлением цепи. На рис. 3.13. показаны две цепи, из которых одна влияющая, другая подверженная влиянию, и пути токов влияния. Оба тока переходят с одной цепи на другую по закону ближнего конца. Токи непосредственного влияния на дальний конец цепи на рис. 3.13 не показаны. Из рис. 3.13 можно видеть, что токи влияния на дальнем конце из-за явления отражений будут тем меньше, чем лучше согласовано входное сопротивление аппаратуры с волновым сопротивлением цепей и чем больше переходное затухание на ближний конец. Следовательно, защищенность на дальнем конце зависит от переходного затухания на ближнем конце А 0 и согласованности входного сопротивления аппаратуры с волновым сопротивлением цепи. По этой при­чине оба эти параметра нормируют.

Влияние из-за конструктивных неоднородностей . В кабельных линиях конструктивные неоднородности обусловлены допусками на параметры полуфабрикатов, используемых для изготовления кабеля (жилы, изоляция жил), допусками в процессе производства кабелей, при скрутке в группы и в общий сердечник кабеля, а также при наложении оболочек. На воздушных линиях причинами конструктивных неоднородностей являются неодинаковые длины стрел провеса проводов, различные расстояния между штырями на траверсах и крюками на опорах. Это приводит к тому, что волновое сопротивление цепей изменяется по длине, в результате чего линия становится неоднородной. В местах изменения волнового сопротивления возникают отраженные волны, которые приводят к появлению суммарной волны, вызванной всеми точками отражений по длине цепи, движущейся к ее началу (встречный поток) и суммарной отраженной волны, движущейся к концу цепи (попутный поток). Эти потоки являются дополнительными источниками влияний на соседние цепи. Конструктивные неоднородности увеличивают поперечную и продольную асимметрии, а следовательно, и влияние между цепями.

Распределение конструктивных неоднородностей вдоль линии носит случайный характер, что значительно ухудшает эффективность скрещивания (скрутки), поэтому их строго нормируют. Чем выше передаваемый спектр частот, тем меньше величина допуска, так как влияние из-за конструктивных неоднородностей возрастает с ростом частоты передаваемого по цепям тока. На воздушных линиях связи расстояние между штырями траверс не должно отклоняться от установленного более чем на 1,5 см, откло­нение длины элемента скрещивания при средней длине его 100 м не должно быть более ± 10 м, асимметрия сопротивления проводов цепи ВЛС постоянному току (на длине усилительного участка) должна быть не более 5 Ом для цепей с проводами из цветных металлов и не более 10 Ом для цепей из стальных проводов диаметром 4 и 5 мм.

Конструктивные элементы симметричных высокочастотных кабелей изготавливаются с жесткими допусками: диаметр медной жилы 1,2 мм ± 100 мкм; максимальная разность диаметров жил в паре 50 мкм; диаметр полистирольного корделя 0,8 мм ± 30 мкм, толщина полистирольной пленки 0,045 мм ± 11 мкм.

Омическая асимметрия цепей кабельных линий городских телефонных сетей постоянному току не должна превышать 1 %. от сопротивления шлейфа измеряемой цепи, а цепей симметричных высокочастотных кабелей типа МКС - , где - длина усилительного участка, км; d – диаметр жилы, мм.

По кабелям типа МКС могут работать как аналоговые так и цифровые системы передачи. Однако производство кабелей типа МКС технологически сложно и они обладают сравнительно низкой электрической прочностью.

Трехслойная пленко-пористая полиэтиленовая изоляция отличается высокой геометрической и диэлектрической однородностью за счет автоматического регулирования диаметра изолированной жилы, погонной емкости и эксцентриситета. Это позволяет обеспечить выполнение основных электрических характеристик кабелей с пленко-пористой полиэтиленовой изоляцией в соответствии с ГОСТ 15125-92 «Кабели связи симметричные высокочастотные с кордельно-полистирольной изоляцией».

Для уменьшения влияния переходного затухания применяются кабели с витыми (скрученными) парами. Это многожильные кабели, у которых жилы скручены по парам или четверкам.

Принцип борьбы с помехами переходного затухания заключается в том, что при скрутке провода, влияющие на отдельные участки кабеля, наводят электромагнитную энергию, равную по амплитуде и противоположную по направлению, как это показано на рис. 6.7. При идеально сбалансированной скрутке (равный шаг скрутки, идеальная симметрия проводов) переходное затухание равно нулю.

Однако в реальной обстановке имеется большое различие амплитуд наведенных сигналов. Оно возникает из-за различного расположения проводов и их различного сопротивления (см. асимметрию).

В связи с проблемой устранения переходного затухания большое внимание уделяется симметрированию проводов разговорного тракта (провода a и b). Любая нагрузка, подключаемая к одному проводу, должна иметь аналог по сопротивлению, подключаемый к другому проводу.

Шумы (помехи)

Рис. 6.8. Метод устранения помех с помощью "скрещивания" проводов

Наличие шумов может, в частности, значительно снизить максимальную длину абонентской линии, которую можно использовать для высокоскоростной связи. В больших городах это помехи от электротранспорта, от мощного промышленного оборудования (включение и отключение мощного оборудования), помехи, возникающие из-за воздействия радиопередатчиков, излучение находящегося рядом радиопередатчика передачи данных. Источником помех может стать разнородность оборудования: например, применение в одном помещении электромеханических и электронных систем. В современных системах, применяющих абонентские устройства передачи данных, большое значение имеет показатель коэффициент импульсных помех.

Коэффициент импульсных помех служит для цифровой оценки состояния линии, он указывает количество ошибок на определенное число переданных битов. Нормальным считается коэффициент ошибок - это означает, что на битов в канале появляется одна помеха, которая может привести к ошибке. Минимально приемлемая величина коэффициента ошибок (допускается обычно при применении радиотракта) составляет . Величина считается хорошей. Следует учитывать, что эти показатели условны. Они измеряются за определенный интервал времени, например, за час. Но в реальности в течение каждого интервала они распределяются неравномерно и могут приходить концентрированно (пачкой). Поэтому иногда вводят коэффициент "пачечности" (концентрации ошибок), который показывает отношение количества ошибок, полученных в данном интервале времени, к ожидаемому среднему по всем интервалам.

Для преодоления ошибок применяются различные алгоритмы, которые будут рассмотрены далее. Помехи ухудшают качество приема речи, а при передаче данных могут привести к неверному их принятию или задержкам, замедляющим реальную скорость обмена данными (скорость модема).

Наибольшие проблемы возникают при ухудшении этого коэффициента и при контроле качества канала со стороны передающих или принимающих устройств. Если эти устройства настроены на отключение канала при превышении ошибки, то при случайных возмущениях в сети часто происходит полное отключение станции. Поэтому при автоматическом контроле этого параметра необходимо оставлять возможность регулировки порога.

Измерение затухания

Стандартный уровень шума, относительно которого измеряются помехи, равен 1 пВт или Вт. Это равняется принятому акустическому порогу слышимости (см. раздел 1.1 в части "Акустические свойства человеческого уха"). В относительных единицах дБм (децибел­милливатт, мощность, отсчитываемая относительно одного милливатта) это составляет 90 дБм.

Мощность, измеряемая относительно эталона 1 пВт, называется эталонной и обозначается в дБэт. Мощность, указанная в дБэт, показывает, насколько уровень шума превышает эталонный.

Уровень 20 дБэт равен 70 дБм, т.е. уровню, измеренному относительно одного децибела.

И наоборот,

Однако, как мы уже отмечали в разделе 1.1, акустическое восприятие человеком звука зависит от частоты. Эта чувствительность изображается кривой на рис. 1.2 (Диаграмма слуха) и имеет максимум на частоте 1000 Гц. Поэтому при измерении мощность шума усредняют (взвешивают) в соответствии с псофометрической кривой, учитывающей уровень слышимости в соответствии с чувствительностью человеческого уха. Приблизительно эта величина составляет 0,562 от мощности шума, измеренной в пВт. Эта мощность называется псофометрической мощностью и обозначается пВтп. Поэтому мощность, выражаемая в дБм, легко пересчитывается в дБп (децибелы псофометрические).

Если сигнал шума имеет мощность , то затухание, выраженное в дБм, равно

а затухание, выраженное в дБп,

Учитывая, что эталонный уровень

Для полноты изложения отметим, что в Северной Америке принято учитывать частотную зависимость восприятия звука с помощью C-взвешивания. Кривая восприятия звука определяется путем измерения чувствительности на различных типах телефонных аппаратов (не менее 500). В этом случае диаграмма восприятия звука несколько отличается от псофометрической. Приблизительно эта величина составляет 0,631 от мощности шума, измеренной в пВт. В этом случае

Задержка передачи

Задержка передачи информации (запаздывание) измеряется временем между поступлением сигнала на вход системы передачи и появлением его на выходе. На это время влияют: параметры линии, параметры аппаратуры, быстродействие и алгоритмы обработки.

Задержка информации приводит к наличию эффекта эха при передаче речи. А фазовые задержки могут привести к ошибкам в передаче данных или к уменьшению скорости передачи за счет времени, необходимого для исправления ошибок.

Пупиновские катушки

Для использования существующей абонентской кабельной сети с целью передачи интегральной информации следует упомянуть еще одно решение, применяемое на абонентском участке в целях увеличения дальности передачи информации в речевом диапазоне - это пупиновские катушки. Известно, что высокие частоты спектра речи подвержены затуханию больше, чем низкие. Это определяется преимущественно емкостным характером абонентской линии. Зависимость затухания от частоты приводит к искажениям речевого сигнала, которые называются "амплитудными искажениями". В существующих сетях получило распространение введение искусственной индуктивности, которая ослабляет емкостный характер. Эти устройства получили название "пупиновские катушки" (по имени их изобретателя, словацкого ученого Пупина). Эти катушки используются на длинных межстанционных и абонентских сельских линиях. Улучшая параметры речи, они препятствуют расширению частотного диапазона (например, для услуг, требующих широкой полосы частот) .

Отводы

Существует три категории отводов абонентской линии в распределительной или магистральной сети. Первый - отвод для подключения резервного оборудования (jumping-off). Он используется в качестве резервной линии для подключения телефонного аппарата в другое место (например, дополнительная розетка). Большую часть времени он находится в состоянии, когда к нему не подключена аппаратура. Отвод для перехвата информации (taping) подразумевает включение оборудования, которое само активно принимает информацию.

Если использование кабельных отводов и допустимо в аналоговых телефонных сетях, обычно такие отводы оказывают серьезное воздействие на работу цифровых систем передачи. Цифровой сигнал, передаваемый по кабелю абоненту, попадает также и в каждый кабельный отвод. Отраженный от конца такого отвода сигнал накладывается на исходный сигнал, подаваемый абоненту, что приводит к значительному увеличению числа ошибок. К цифровому абонентскому тракту не должно быть подключено никакое телефонное оборудование.

Еще один тип отвода - неиспользуемая пара (bridged tap): дополнительная пара проводов, проложенная рядом с основными парами кабеля. Она обычно ни к чему не подключена, но может понадобиться в будущем для подключения нового пользователя. Короткие неиспользуемые пары не влияют на сигналы в речевой полосе, но могут быть чрезвычайно вредны для цифровых сигналов высокой частоты.

Потери

Качество обслуживания телефонных вызовов на сети определяется вероятностью потерь (отказов в обслуживании) из-за отсутствия свободных и доступных коммутационных приборов или каналов.

Определению всех понятий и расчету потерь посвящена большая область теоретических исследований. Для детального рассмотрения этих вопросов рекомендуются книги . Кратко приведем нормы на обслуживания.

Имеются потери двух типов - явные потери и потери по ожиданию. В первом случае при отсутствии свободных путей или каналов заявка снимается с обслуживания, во втором случае - ставится на ожидание. Она снимается с обслуживания, если время ожидания превышает заранее заданную величину.

Суммарные потери любого типа от абонента до абонента не должны превышать:

  • при связи через городскую телефонную сеть - 0,03;
  • при связи через пригородную зону - 0,04;
  • при связи через междугороднюю сеть - 0,005.

Эти потери следует разделять на станционные и линейные. Поскольку стоимость линейных сооружений больше стоимости станционной аппаратуры, для станций устанавливаются нормы небольшой величины, а оставшаяся часть приходится на потери из-за отсутствия линий и каналов.

Для станций существуют следующие нормы:

  • от абонента до входа (выхода) станции - 0,001,
  • и между двумя входами (выходами) станции - 0,005.

В конце отметим, что норма потерь очень отражается на технико­экономических показателях сети: чем меньше норма потерь, тем больше требуется установить оборудования.

Качество обслуживания

Рассмотренные выше показатели потери характеризуют только одну сторону услуги передачи речи. В современных сетях телекоммуникаций применяется характеристика качество обслуживания. Эта характеристика является комплексной при оценке класса и качества услуг.

Все виды трафика можно разделить на три основные категории .

Трафик реального времени включает в себя аудио­ и видеоинформацию, критичную к задержкам при передаче. Обычно качество характеризуется явными потерями. Допустимые значения задержек обычно не превышают 0,1 с (сюда входит время на обработку пакетов конечной станцией). Кроме того, задержка должна иметь малые флуктуации (с ними связан эффект "дрожания"). При сжатии информации трафик данной категории становится очень чувствительным к ошибкам при передаче, а из-за жестких требований к задержкам при передаче потоков в режиме реального времени возникающие ошибки не могут быть исправлены с помощью повторной посылки.

Трафик транзакций (интерактивный). При передаче этого вида трафика задержки не должны превышать 0,1 с. В противном случае пользователи будут вынуждены прерывать работу и ждать ответа на свои сообщения. Такая схема обмена информацией снижает производительность труда, а разброс в значениях задержек может привести к возникновению чувства дискомфорта у пользователей. В некоторых случаях превышение допустимого времени задержек приводит к сбою рабочей сессии.

Трафик данных. Задержки при передаче трафика этой категории могут иметь практически любые значения и достигать даже нескольких секунд. Для такого трафика полоса пропускания более важна, чем время задержек: увеличение пропускной способности сети влечет за собой уменьшение времени передачи. Приложения, передающие большие объемы данных, разработаны преимущественно в расчете на предоставление им всей доступной полосы пропускания сети.

Следующим шагом на пути к реализации коэффициента качества обслуживания QoS стала разработка механизма явного управления скоростью трафика (ECR - Explicit Rate Control), который в течение ряда лет довольно активно используется в сетях ATM. В последнее время все чаще высказывается мнение, что ECR можно применять также со стеком протоколов TCP/IP. Этот механизм способен работать автономно либо совместно с существующими алгоритмами организации очередей. Основные задачи, которые он позволяет решать:

  • рост производительности каналов связи;
  • уменьшение времени ожидания реакции сети;
  • увеличение степени детализации сетевого управления благодаря контролю за отдельными потоками трафика.

Преимущества ECR таковы:

  • возможность точного управления распределением полосы пропускания между входящими и исходящими потоками трафика;
  • снижение нагрузки на сеть, связанной с повторной передачей пакетов с ошибками;
  • уменьшение длины очередей в маршрутизаторе (и, как следствие, снижение нагрузки на его центральный процессор);
  • значительное сокращение времени доставки пакета и уменьшение его флуктуаций, более быстрая адаптация к изменениям ситуации. Реализацию этого механизма можно изучить в и .

Краткие итоги

В первом случае при отсутствии свободных путей или каналов заявка снимается с обслуживания, во втором случае - ставится на ожидание. Она снимается с обслуживания, если время ожидания превышает заранее заданную величину.

  • В современных сетях телекоммуникаций применяется характеристика качество обслуживания. Эта характеристика является комплексной при оценке класса и качества услуг.
  • Трафик реального времени включает в себя аудио­ и видеоинформацию, критичную к задержкам при передаче. Обычно качество характеризуется явными потерями. Допустимые значения задержек обычно не превышают 0,1 с (сюда входит время на обработку пакетов конечной станцией).
  • Трафик транзакций (интерактивный). При передаче этого вида трафика задержки не должны превышать 0,1 с. В противном случае пользователи будут вынуждены прерывать работу и ждать ответа на свои сообщения.
  • Трафик данных. Задержки при передаче трафика этой категории могут иметь практически любые значения и достигать даже нескольких секунд.
  • Схема, включаемая в линию и выполняющая переход от двухпроводной линии к четырехпроводной, называется дифференциальной системой (hybrid).
  • При работе дифференциальной схемы возможен переход информации с цепей передачи на цепь приема, как это показано на рисунке пунктирной линией.

Такой переход вызывает у абонента эффект эха. Явление "эхо" заключается в поступлении в приемник сигнала передатчика.

  • В цифровых системах для улучшения качества тракта применяется цифровая схема эхокомпенсации. Ее принцип заключается в том, что передаваемая в линию информация через цепь задержки передается в сумматор, стоящий в цепи приема. Там она вычитается (алгебраически суммируется) из принимаемого потока. Задержка и параметры сигнала выбираются таким образом, чтобы при вычитании уничтожить сигналы, перешедшие из собственной цепи передачи.
  • Метод эхоподавления основан на том, что при передаче информации закрывается (ослабляется) цепь собственного приема. При эхоподавлении может происходить ухудшение качества связи в момент, когда оба абонента активны, а тракт приема одного из них заблокирован.